# 获取单词出现频率
def word_count(file_name):
import collections
word_freq = collections.defaultdict(int)
with open(file_name) as f:
for l in f:
for w in l.strip().split():
word_freq[w] += 1
return word_freq
def build_dict(file_name, min_word_freq=10):
word_freq = word_count(file_name) # 参见前一篇博客中的定义:https://blog.csdn.net/wiborgite/article/details/79870323
word_freq = filter(lambda x: x[1] > min_word_freq, word_freq.items()) # filter将词频数量低于指定值的单词删除。
word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0]))
# key用于指定排序的元素,因为sorted默认使用list中每个item的第一个元素从小到
# 大排列,所以这里通过lambda进行前后元素调序,并对词频去相反数,从而将词频最大的排列在最前面
words, _ = list(zip(*word_freq_sorted))
# 单纯获取单词
with open(r"data/voacb.txt",'a') as f:
f.write('\n'.join(words))
# 获取单词和单词比例
#word_idx = dict(zip(words, range(len(words))))
#word_idx['<unk>'] = len(words) # unk表示unknown,未知单词
#return word_idx
通过文本构建词典
最新推荐文章于 2024-11-04 22:26:34 发布