题解:用atan2(long double y,long double x)返回点(x,y)与x正半轴的夹角,取值从(-PI,PI]。
得到所有的单点偏转角排序后,用相邻数组元素相减得到两点与原点连线的夹角,然后维护它的最小值就行了,注意最后还要用第一个减最后一个(构成整个循环),并且如果其若为负数还要加2*PI.
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
const long double PI = acos(-1.0);
vector<pair<long double,int>>vec;
int flag1,flag2;
int main(){
int n;
cin>>n;
for(int i=0;i<n;i++){
long double x,y;
cin>>x>>y;
pair<long double ,int > angle;
angle.first=atan2(y,x);
angle.second=i+1;
vec.push_back(angle);
}
sort(vec.begin(),vec.end());
long double ans = 2*PI;
for(int i=0;i<n;i++){
long double tmp = (vec[(i+1)%n].first-vec[i].first);
if(tmp<0) tmp+=2*PI;
if(tmp<ans){
ans=tmp;
flag1=vec[i].second;
flag2=vec[(i+1)%n].second;
}
}
cout<<flag1<<" "<<flag2<<endl;
return 0;
}