CodeForces-598C-Nearest vectors【高精度几何】

题解:用atan2(long double y,long double x)返回点(x,y)与x正半轴的夹角,取值从(-PI,PI]。

得到所有的单点偏转角排序后,用相邻数组元素相减得到两点与原点连线的夹角,然后维护它的最小值就行了,注意最后还要用第一个减最后一个(构成整个循环),并且如果其若为负数还要加2*PI.

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
const long double PI = acos(-1.0);
vector<pair<long double,int>>vec;
int flag1,flag2;
int main(){
	int n;
	cin>>n;
	for(int i=0;i<n;i++){
		long double x,y;
		cin>>x>>y;
		pair<long double ,int > angle;
		angle.first=atan2(y,x);
		angle.second=i+1;
		vec.push_back(angle);
	}
	sort(vec.begin(),vec.end());
	long double ans = 2*PI;
	for(int i=0;i<n;i++){
		long double tmp = (vec[(i+1)%n].first-vec[i].first);
		if(tmp<0) tmp+=2*PI;
		if(tmp<ans){
			ans=tmp;
			flag1=vec[i].second;
			flag2=vec[(i+1)%n].second;
		}
	}
	cout<<flag1<<" "<<flag2<<endl;
	return 0;
}

 

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值