剑指 Offer II 091. 粉刷房子——动态规划

题目概述:

在这里插入图片描述
题目链接:点我做题

题解:

  本题的难点在于建立出合适的动态规划模型。
  仔细想一想,本题求得是最终的最小费用,给的规则是相邻的两个房子不能涂成一样的颜色,注意到当前房子如果涂成红色,那么前面的房子就必须涂成蓝色或绿色。
  我们对下标为i的房子图不同的颜色, 0   i 0~i 0 i的房子的涂色方案也要发生变化,
  因此我们可以对下标为i的房子建立一个向量 s [ i ] ⃗ = ( s 0 [ i ] , s 1 [ i ] , s 2 [ i ] ) \vec{s[i]}=(s_0[i],s_1[i],s_2[i]) s[i] =(s0[i],s1[i],s2[i])
   s 0 [ i ] s_0[i] s0[i]的含义是下标为i的房子涂色成红色时的这0i个房子的最小涂色费用和,$s_1[i]$的含义是下标为i的房子涂色涂成蓝色时,这0i个房子的最小涂色费用和, s 2 [ i ] s_2[i] s2[i]的含义是下标为i的房子涂色涂成绿色时,这0~i个房子的最小涂色费用和.
  由于规则,我们下标为i的房子涂色成了红色时,下标为i-1的房子就只能涂成蓝色或绿色,所以下标为i的房子涂色成红色的最小费用就等于下标为i-1的房子涂色成蓝色或绿色时,下标为0~i-1的房子的费用中的较小者加上下标为i的房子涂色成红色的费用,其它颜色类似,因此有状态转移方程:
s 0 [ i ] = m i n ( s 1 [ i − 1 ] , s 2 [ i − 1 ] ) + c o s t s [ i ] [ 0 ] s 1 [ i ] = m i n ( s 0 [ i − 1 ] , s 2 [ i − 1 ] ) + c o s t s [ i ] [ 1 ] s 2 [ i ] = m i n ( s 0 [ i − 1 ] , s 1 [ i − 1 ] ) + c o s t s [ i ] [ 2 ] s_0[i] = min(s_1[i-1],s_2[i - 1])+costs[i][0]\\ s_1[i] = min(s_0[i-1],s_2[i - 1])+costs[i][1]\\ s_2[i] = min(s_0[i-1],s_1[i - 1])+costs[i][2] s0[i]=min(s1[i1],s2[i1])+costs[i][0]s1[i]=min(s0[i1],s2[i1])+costs[i][1]s2[i]=min(s0[i1],s1[i1])+costs[i][2]
  显然第一个房子涂色不受前面房子影响,最后我们的最小值就是下标为n-1的房子的三种涂色方案最小费用中的最小者。
代码:

public:
    int minCost(vector<vector<int>>& costs) 
    {
        //dp[i][0]下标为i的房子要求涂成红色时,i+1个房子涂色所需的最小费用
        //dp[i][1]下标为i的房子要求涂成蓝色时,i+1个房子涂色所需的最小费用
        //dp[i][2]下标为i的房子要求涂成绿色时,i+1个房子涂色所需的最小费用
        //根据题意 第i个房子被涂成红色 那么前面的那个房子就必须涂成绿色或蓝色
        //所以下标为i的房子要求涂成红色,这i+1个房子涂色的总费用等于
        //下标为i的房子涂成红色的费用costs[i][0]加上前面的下标为i-1的房子
        //要求涂成绿色或蓝色(取小)时 下标0~i-1个房子涂色的总成本
        //即min(dp[i - 1][1], dp[i - 1][2])
        //dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i][0]
        //dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i][1]
        //dp[i][2] = min(dp[i - 1][0], dp[i - 1][1]) + costs[i][2]
        int size = costs.size();
        vector<vector<int>> dp(size, vector<int>(3));
        dp[0][0] = costs[0][0];
        dp[0][1] = costs[0][1];
        dp[0][2] = costs[0][2];
        for (int i = 1; i < size; ++i)
        {
            dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i][0];
            dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i][1];
            dp[i][2] = min(dp[i - 1][0], dp[i - 1][1]) + costs[i][2];
        }
        return (dp[size - 1][0] > dp[size - 1][1]) ?
        (dp[size - 1][1] > dp[size - 1][2] ? dp[size - 1][2] : dp[size - 1][1]) :
        (dp[size - 1][0] > dp[size - 1][2] ? dp[size - 1][2] : dp[size - 1][0]);
        
    }
};

  注意到状态转移方程中,计算下标为i的状态只和下标为i-1时的状态有关,因此可以进一步优化压缩空间复杂度:

class Solution {
public:
    int minCost(vector<vector<int>>& costs) 
    {
        int prev[3];
        int prevred = prev[0] = costs[0][0];
        int prevblue = prev[1] = costs[0][1];
        int prevgreen = prev[2] = costs[0][2];
        int size = costs.size();
        for (int i = 1; i < size; ++i)
        {
            prevred  = min(prev[1], prev[2]) + costs[i][0];
            prevblue = min(prev[0], prev[2]) + costs[i][1];
            prevgreen = min(prev[0], prev[1]) + costs[i][2];
            //用完了上一轮的状态转化为本轮状态后 再覆盖掉上一轮的状态为本轮的状态
            prev[0] = prevred;
            prev[1] = prevblue;
            prev[2] = prevgreen;
        }
        return (prevred < prevblue) ? ((prevred < prevgreen) ? prevred : prevgreen) :
        ((prevblue < prevgreen) ? prevblue : prevgreen);
    }
};

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值