LeetCode120. 三角形最小路径和—两种动态规划思路与实现

题目概述:

在这里插入图片描述
题目链接:点我做题

题解

一、自顶向底的dp

  我们把这个三角形每个点的下标视为矩阵中的点,那么可以定义 f ( i , j ) f(i,j) f(i,j)为自 ( 0 , 0 ) (0,0) (0,0)点到 ( i , j ) (i,j) (i,j)点的最短路径,状态转移方程就是考虑到上一层的每个点的最短路径已经计算过的情况下,这一层的值怎么得来。
  由于下一层比上一层多出一个元素,所以下一层有两个点是特殊的,一个是下标为0的点,它只能由上一层下标为0的点到达,另一个是下标为当前层数i的点,它只能由上一层的下标为 i − 1 i-1 i1的点到达;其他点(下标为j)均可以由上一层的下标为 j − 1 j-1 j1的点和下标为 j j j的点到达,因此状态转移方程就得到了:
1. j = = 0 , f ( i , j ) = f ( i − 1 , 0 ) + t r i a n g l e [ i ] [ j ] 最 左 边 上 只 能 从 上 一 层 的 最 左 边 上 来 2. j = = i , f ( i , j ) = f ( i − 1 , j − 1 ) + t r i a n g l e [ i ] [ j ] 最 右 边 上 只 能 从 上 一 层 的 最 右 边 上 来 3. 其 他 f ( i , j ) = m i n ( f ( i − 1 , j − 1 ) , f ( i − 1 , j ) ) + t r i a n g l e [ i ] [ j ] 1.j == 0, f(i,j) = f(i - 1, 0) + triangle[i][j] 最左边上 只能从上一层的最左边上来\\ 2.j == i, f(i,j) = f(i - 1, j - 1) + triangle[i][j] 最右边上 只能从上一层的最右边上来\\ 3.其他 f(i,j) = min(f(i - 1, j - 1), f(i - 1, j)) + triangle[i][j] 1.j==0,f(i,j)=f(i1,0)+triangle[i][j]2.j==i,f(i,j)=f(i1,j1)+triangle[i][j]3.f(i,j)=min(f(i1,j1),f(i1,j))+triangle[i][j]
  由此,可以写出代码:
  下面的代码是修改了原数组中的数据,如果不允许修改原数组中的数据则新开一个二维数组 d p dp dp即可,行数和列数均为 l e v e l level level.

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) 
    {
        /*
        f(i,j)代表从(0,0)点到达(i,j)点的最短路径
        只能从上一层的相邻路径来 所以
        1.j == 0, f(i,j) = f(i - 1, 0) + triangle[i][j] 最左边上 只能从上一层的最左边上来
        2.j == i, f(i,j) = f(i - 1, j - 1) + triangle[i][j] 最右边上 只能从上一层的最右边上来
        3.其他 f(i,j) = min(f(i - 1, j - 1), f(i - 1, j)) + triangle[i][j]
        可以直接用给的三角数组来储存状态 因为递推中用的都是计算过的位置的状态和未计算位置代表的距离
        */
        int level = triangle.size();
        for (int i = 1; i < level; ++i)
        {
            for (int j = 0; j <= i; ++j)
            {
                if (j == 0)
                {
                    triangle[i][j] = triangle[i - 1][0] + triangle[i][j];
                }
                else if (j == i)
                {
                    triangle[i][j] = triangle[i - 1][j - 1] + triangle[i][j];
                }
                else
                {
                    triangle[i][j] = triangle[i][j] + 
                    min(triangle[i - 1][j - 1], triangle[i - 1][j]);
                }
            }
        }
        int ret = triangle[level - 1][0];
        for (auto e : triangle[level - 1])
        {
            if (ret > e)
            {
                ret = e;
            }
        }
        return ret;
    }
};

  观察到本行状态仅和上一行状态有关,因此可以利用滚动数组优化空间复杂度:

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) 
    {
        /*
        如果禁止修改原数组 定义f(i,j)为从(0,0)点到那么状态转移方程还是
        1.j == 0,即在这一行的最左边 f(i,j) = f(i - 1,0) + triangle[i][j]
        2.j == i,即在这一行的最右边 f(i,j) = f(i - 1,j - 1) + triangle[i][j]
        3.其他 f(i,j) = min(f(i - 1, j - 1), f(i - 1, j)) + triangle[i][j]
        空间复杂度优化:只需要一个长度为三角形最后一行(也就是行数)个数的数组就可以了
        */
        int level = triangle.size();
        vector<int> dp(level);
        dp[0] = triangle[0][0];
        for (int i = 1; i < level; ++i)
        {
            /*
            注意这里要求数组中的dp[j-1]还是上一行的f(i-1,j-1)
            因此从大往小递归。
            */
            for (int j = i; j >= 0; --j)
            {
                if (j == 0)
                {
                    dp[0] = dp[0] + triangle[i][j];
                }
                else if (j == i)
                {
                    dp[j] = dp[j - 1] + triangle[i][j]; 
                }
                else
                {
                    dp[j] = min(dp[j - 1], dp[j]) + triangle[i][j];
                }
            }
        }
        int ret = dp[0];
        for (auto e : dp)
        {
            ret = min(ret, e);
        }
        return ret;
    }
};

时间复杂度: O ( N ) O(N) O(N),N为三角形中点的个数
空间复杂度: O ( l e v e l ) O(level) O(level),level为三角形层数

二、自底向上dp

  本题更自然的一个状态定义是定义 F ( i . j ) F(i.j) F(i.j) ( i , j ) (i,j) (i,j)到最底层的最短距离,那么我们要的答案就是 F ( 0 , 0 ) F(0,0) F(0,0),并且由于我们这样定义了,我们只能先从底下的行往上算,初始状态就是 t r i a n g l e triangle triangle数组最后一行的值,然后在已知前一行到底层的最短距离的情况下,对于点 ( i , j ) (i,j) (i,j),显然要么它走到下一层的 ( i + 1 , j ) (i+1,j) (i+1,j)从而到达最底层,要么走到下一层的 ( i + 1 , j + 1 ) (i+1,j+1) (i+1,j+1)从而到达最底层。
  由于每上一层点会比上一层少一个,因此这种动态规划的状态转移方程不需要考虑边界情况,状态转移方程为: f ( i , j ) = m i n ( f ( i + 1 , j ) , f ( i + 1 , j + 1 ) ) + t r i a n g l e ( i , j ) f(i,j)=min(f(i+1,j),f(i+1,j+1))+triangle(i,j) f(i,j)=min(f(i+1,j),f(i+1,j+1))+triangle(i,j)
  代码如下:

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) 
    {
        /*
        若定义F(i,j)为点(i,j)到达最后一行的最短路径
        则F(i,j) = min(F(i + 1, j), F(i + 1, j + 1)) + triangle(i,j)
        初始状态 F(level - 1,j) = triangle(level - 1, j) 
        */
        int level = triangle.size();
        vector<vector<int>> F(level, vector<int>(level));
        for (int j = 0; j < level; ++j)
        {
            F[level - 1][j] = triangle[level - 1][j];
        }
        for (int i = level - 2; i >= 0; --i)
        {
            for (int j = 0; j <= i; ++j)
            {
                F[i][j] = min(F[i + 1][j], F[i + 1][j + 1]) + triangle[i][j];
            }
        }
        return F[0][0];
    }
};

  同理,本方法也可以优化空间复杂度:

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) 
    {
        /*F(i,j) = min(F(i + 1, j), F(i + 1, j + 1)) + triangle(i, j)*/
        /*这里要求计算dp[j]时dp[j+1]还是下面那层的F(i+1,j+1)因此从小往大遍历避免覆盖*/
        int level = triangle.size();
        vector<int> dp(level);
        for (int j = 0; j < level; ++j)
        {
            dp[j] = triangle[level - 1][j];
        }
        for (int i = level - 2; i >= 0; --i)
        {
            for (int j = 0; j <= i; ++j)
            {
                dp[j] = min(dp[j], dp[j + 1]) + triangle[i][j];
            }
        }
        return dp[0];
    }
};

时间复杂度: O ( N ) O(N) O(N)
空间复杂度: O ( l e v e l ) O(level) O(level)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值