CCF-CSP考试2021年4月第2题(邻域均值)

本文介绍了一种针对灰度图像的高效降噪方法,通过对图像像素的邻域均值计算来判断并处理较暗区域的噪声,采用动态更新策略减少重复计算,显著提升处理速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间限制: 1.0 秒

空间限制: 512 MiB

题目背景

顿顿在学习了数字图像处理后,想要对手上的一副灰度图像进行降噪处理。不过该图像仅在较暗区域有很多噪点,如果贸然对全图进行降噪,会在抹去噪点的同时也模糊了原有图像。因此顿顿打算先使用邻域均值来判断一个像素是否处于较暗区域,然后仅对处于较暗区域的像素进行降噪处理。

题目描述

待处理的灰度图像长宽皆为 n 个像素,可以表示为一个 n×n 大小的矩阵 A,其中每个元素是一个 [0,L) 范围内的整数,表示对应位置像素的灰度值。 对于矩阵中任意一个元素 Aij(0≤i,j<n),其邻域定义为附近若干元素的集和:

Neighbor(i,j,r)={Axy|0≤x,y<n and |x−i|≤r and |y−j|≤r}

这里使用了一个额外的参数 r 来指明 Aij 附近元素的具体范围。根据定义,易知 Neighbor(i,j,r) 最多有 (2r+1)2 个元素。

如果元素 Aij 邻域中所有元素的平均值小于或等于一个给定的阈值 t,我们就认为该元素对应位置的像素处于较暗区域。 下图给出了两个例子,左侧图像的较暗区域在右侧图像中展示为黑色,其余区域展示为白色。

现给定邻域参数 r 和阈值 t,试统计输入灰度图像中有多少像素处于较暗区域

输入格式

从标准输入读入数据。

输入共 n+1 行。

输入的第一行包含四个用空格分隔的正整数 n、L、r 和 t,含义如前文所述。

第二到第 n+1 行输入矩阵 A。 第 i+2(0≤i<n)行包含用空格分隔的 n 个整数,依次为 Ai0,Ai1,⋯,Ai(n−1)。

输出格式

输出到标准输出。

输出一个整数,表示输入灰度图像中处于较暗区域的像素总数。

样例1输入

4 16 1 6
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

样例1输出

7

样例2输入

11 8 2 2
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 7 0 0 0 7 0 0 7 7 0
7 0 7 0 7 0 7 0 7 0 7
7 0 0 0 7 0 0 0 7 0 7
7 0 0 0 0 7 0 0 7 7 0
7 0 0 0 0 0 7 0 7 0 0
7 0 7 0 7 0 7 0 7 0 0
0 7 0 0 0 7 0 0 7 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

样例2输出

83

子任务

70 的测试数据满足 n≤100、r≤10。

全部的测试数据满足 0<n≤600、0<r≤100 且 2≤t<L≤256。

 

思路

一开始我想着这个题是第二题,应该可以暴力求解,于是直接二重循环,但是提交后发现只通过了7个测试用例,后3个用例超时了(该思路的代码见代码1)。

于是我仔细读了一下题目,发现子任务那里写着:70 的测试数据满足 n≤100、r≤10;而全部的测试数据满足 0<n≤600、0<r≤100 且 2≤t<L≤256。看到这里我就知道了,后三个测试用例是卡时间的,暴力并不能拿到满分,必须进行优化。

思考这个过程,我们会发现,其实对于某个元素的邻域来说,它可以由前一个元素的邻域和一些新的元素构成,因此大量重复的加和运算可被避免。

举个例子:

当L = 50,n = 7,r = 2,t任意时,给出矩阵A:

1    2    3    4    5    6    7

8    9    10  11  12  13  14

15  16  17  18  19  20  21

22  23  24  25  26  27  28

29  30  31  32  33  34  35

36  37  38  39  40  41  42

43  44  45  46  47  48  49

我们分别考察24和25(因为这两个元素是相邻的)的邻域,应该分别是

   1    2    3    4    5       6    7

 — — — — — — —

|  8    9    10  11  12  |  13  14

|  15  16  17  18  19  |  20  21

|  22  23  24  25  26  |  27  28

|  29  30  31  32  33  |  34  35

|  36  37  38  39  40  |  41  42

 — — — — — — —

   43  44  45  46  47     48  49

             24的邻域

 

1       2    3    4    5    6       7

       — — — — — — —

8    |  9    10  11  12  13  |  14

15  |  16  17  18  19  20  |  21

22  |  23  24  25  26  27  |  28

29  |  30  31  32  33  34  |  35

36  |  37  38  39  40  41  |  42

       — — — — — — —

43     44  45  46  47  48     49

             25的邻域

可以看到,这两个元素的邻域之间的重合度非常高,因此可以通过利用前一个元素的邻域来避免大量重复计算。具体思路是:每一行的第一个元素执行一次完整的邻域计算,对于之后的n - 1个元素,利用前一个元素的邻域进行计算。如此,执行时间大大降低,成功通过所有测试用例。

代码1(暴力遍历)

#include <iostream>
#include <vector>
using namespace std;
int main()
{
    int n, L, r, t;
    vector<vector<int>> matrix;
    int temp;
    int res = 0;
    cin >> n >> L >> r >> t;

    //input
    for(int i = 0; i < n; i++)
    {
        vector<int> a;
        for(int j = 0; j < n; j++)
        {
            cin >> temp;
            a.push_back(temp);
        }
        matrix.push_back(a);
    }

    //data process
    for(int i = 0; i < n; i++)
        for(int j = 0; j < n; j++)
        {
            int bound_x = i + r > n - 1? n - 1 : i + r;
            int bound_y = j + r > n - 1? n - 1 : j + r;
            int sum = 0, num = 0;
            for(int k = i - r > 0? i - r : 0; k <= bound_x; k++)
                for(int m = j - r > 0 ? j - r : 0; m <= bound_y; m++)
                {
                    num++;
                    sum += matrix[k][m];
                }
            double avg = (double)sum / num;
            if(avg <= t)
            res++;
        }

    cout << res;
    return 0;
}

代码2(优化后的代码)

#include <iostream>
using namespace std;
int main()
{
    int n, L, r, t;
    int matrix[600][600];
    int res = 0;
    int temp;
    cin >> n >> L >> r >> t;

    //input
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < n; j++)
        {
            cin >> temp;
            matrix[i][j] = temp;
        }
    }


    //data process
    int sum = 0, num = 0, lastsum = 0, lastnum = 0;
    for(int i = 0; i < n; i++)
    {
        sum = num = 0;
        int bound_x = i + r > n - 1? n - 1 : i + r;
        int bound_y = 0 + r > n - 1? n - 1 : 0 + r;
        int start_x = i - r > 0 ? i - r : 0;
        for(int k = start_x; k <= bound_x; k++)
            for(int m = 0; m <= bound_y; m++)
            {
                num++;
                sum += matrix[k][m];
            }
        double avg = (double)sum / num;
        lastnum = num; lastsum = sum;
        if(avg <= t)
            res++;



        for(int j = 1; j < n; j++)
        {
            sum = lastsum;
            if(j - r <= 0)
            {
                num = lastnum + bound_x - start_x + 1;
                for(int m = start_x; m <= bound_x; m++)
                    sum += matrix[m][j+r];
                avg = (double)sum / num;
            }
            else if(j + r > n - 1)
            {
                num = lastnum - (bound_x - start_x + 1);
                for(int m = start_x; m <= bound_x; m++)
                    sum -= matrix[m][j - r - 1];
                avg = (double)sum / num;
            }
            else
            {
                num = lastnum;
                for(int m = start_x; m <= bound_x; m++)
                    sum += matrix[m][j+r] - matrix[m][j - r - 1];
                avg = (double)sum / num;
            }
            if(avg <= t)
                res++;
            lastnum = num; lastsum = sum;
        }
    }
    cout << res;
    return 0;
}

 

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值