最大公约数的求法---辗转相除法

本文介绍了辗转相除法(欧几里得算法)用于求解两个正整数最大公约数的基本原理,包括算法的三个关键性质。通过算法的递归描述和迭代过程,阐述了如何找到最大公因子。此外,还提到了最大公约数与最小公倍数的关系公式,并给出了计算最小公倍数的代码示例。
摘要由CSDN通过智能技术生成

辗转相除法:
辗转相除法是利用以下性质来确定两个正整数

a和b的最大公因子的:

1.若r是a÷b的余数,则gcd(a,b)=gcd(b,r)
2.a和其倍数之最大公因子为a。
3. 0 可以除尽任何数,所以0和任何数的最大公约数都是那个“任何数”

另一种写法是:

1.a÷b,令r为所得余数(0≤r<b)。若r=0,算法结束;b即为答案。
2.互换:置a←b,b←r,并返回第一步。

设a、b两值的最小公倍数为lcm(a, b), 则对于两个正整数a、b。有:

gcd(a, b) * lcm(a, b) = a * b
即,lcm(a, b) = a * b / gcd(a, b)

代码:

#include<iostream>
#include<vector>

using 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值