手把手教你GPT-SoVITS V2版本模型教程,内附整合包

首先需要声明的一点就是V1的模型能用在V2上面,但是V2的模型不能用在V1上,并且V1模型在V2上效果不佳!
整合包下载地址:

GPT-SoVITS V2整合包下载
https://klrvc.com/ GPT-SoVITS V2模型下载网

这次V2更新了以下功能

UVR5:

1.将hp2模型替换为model_bs_roformer_ep_317_sdr_12.9755模型,大幅提升分离人声的效果。

2.新增DeEchoNormal和DeReverb模型。去混响效果Normal<Aggressive

切分&降噪&打标&校对:

1.自动填充路径

2.funasr增加粤语,whisper增加韩语和粤语标注功能。funasr的粤语标注更为准确

3.whisper可选推理精度,float16可以带来更快的推理速度

预处理:

1.中文改为G2PW处理以优化多音字效果,但处理速度变慢了

2.优化了英文多音字效果,处理速度也变快了

训练:

1.全新底膜,训练集增加到5k小时

2.增加韩粤两种语言

3.训练所需数据集更少

推理:

1.zero shot效果大幅增强

2.中日英韩粤5个语种均可跨语种合成

3.对低音质参考音频合成出来音质更好

4.更好的文本前端,中英文加入多音字优化

5.增加语速调节

6.增加音色融合

以上具体的更新内容来自官方给出的信息,这些内容也在后来我使用V2推理得到了验证,其实使用V2和V1并没有什么区别,WEBUI就多了一个降噪功能,其他的都一样。

接下来让我们教大家如何在V2中训练出自己的模型吧。

其中我将省略干音数据集的制作过程,因为这一步非常繁琐,其中包括降噪 和声分离 去混响 音质增强等步骤,有机会我会特别制作一期教程。

如果您是整合包执行下面的代码进入V2和V1

python webui.py <language(optional)>
python webui.py v1 <language(optional)>

其中<language(optional)>做了国际化处理,如果你使用的是云端可以查看这篇文章的教程。https://www.codewithgpu.com/i/RVC-Boss/GPT-SoVITS/GPT-SoVITS-Official

接下来正式进入到我们的图文教程

在这里插入图片描述

打开WEBUI首先第一步就是音频的分离与降噪,如果您之前就已经用其他降噪分离软件处理的话,这一步可以省略,否则必须进行这一步进行分离,这里你只需要设置音频自动切分文件夹或文件,输出目录最好不要再去调整,除非你有足够的耐心,因为所有的步骤,作者都已经默认给你填写了,你只需要填一个输入路径即可。

在这里插入图片描述
这里V2新增了一个语音降噪功能,之前V1版本是没有的,但是也请在这个功能之前先降噪一遍自己的音频,在使用这个功能,之后就是标注我们的文件,这个标注和V1使用的方法是一样的。

在这里插入图片描述

到这一步开始打标,我们需要注意的是你的打标文件的路径,如果不知道自己的项目打标路径可以看看控制台,在ASR自动打标的时候会输出一个路径,填写这个路径即可。

在这里插入图片描述
上面就是控制台输出的打标文件路径,填写之后开启打标WEBUI即可。

在这里插入图片描述
控制台会输出URL地址,复制这个地址在浏览器打开即可进入打标页面

在这里插入图片描述

打标这里需要注意的是这里还是和V1版本一样,首先修改错别字,之后修改停顿点,这里特别重要,会影响最终模型的输出效果,其中[Previous Index]是上一页,[Next Index]是下一页,[Save File]是保存文件,[Submit Text]是重载打标文件。正确的顺序是当我们修改一页的打标后,点击保存文件Save File,之后在进入Next Index下一页,不点保存否则无效。

在这里插入图片描述

之后我们来到推理分页,这里需要设置的就是你的模型文件名以及文本标注路径以及分割后的音频文件目录,这里得填写正确,否则三连的时候会出错,如果你没有修改默认输出目录的话,这一步你就填写个模型名就可以了。

在这里插入图片描述
其他的都不需要动,直接[开启一键三连即可],完成后会自动提示完成。

在这里插入图片描述
点击微调训练,这一步引用作者的原话就是如果您的数据集不是很好,那么这一步默认轮数就可以,否则会物极必反,效果会很差。点击开启训练即可。

在这里插入图片描述
以上是训练完成的最终的输出信息

在这里插入图片描述
训练完成之后,点击刷新模型路径,选择自己训练的模型,也就是你刚刚输入的模型名一个GPT模型列表和SoVITS模型列表,都需要一致才可行。

在这里插入图片描述
点击开启TTS推理WEBUI后在控制台会输出一个新的URL地址,复制打开即可。

在这里插入图片描述
用法和V1一样,不过多了几个选项就是语速和音色稳定功能,防止上次音频和本次生成的音频音色不一致的问题。这里我测试了一下,长文本,大概有200字左右。

在这里插入图片描述
这里我用的是2080T(11GB)的显卡作为推理,最终生成的时间为13秒左右,生成速度更是达到了180it/s,比上一代版本提升的速度很快。

总体对比下来,V2的提升绝对不止一点,V2的提升无论是在音色还是速度的上,真正的达到了,跨版本的大更新,之前我在使用V1版本的模型推理上,由于一些早期数据集的音质影响下,生成出来的模型结果也是大失所望,好在V2的发布弥补了这些问题。

GPT, 通常指的是“Generative Pre-trained Transformer”(生成式预训练转换器),是一个在自然语言处理(NLP)领域非常流行的深度学习模型架构。GPT模型由OpenAI公司开发,并在多个NLP任务上取得了显著的性能提升。 GPT模型的核心是一个多层Transformer解码器结构,它通过在海量的文本数据上进行预训练来学习语言的规律。这种预训练方式使得GPT模型能够捕捉到丰富的上下文信息,并生成流畅、自然的文本。 GPT模型的训练过程可以分为两个阶段: 预训练阶段:在这个阶段,模型会接触到大量的文本数据,并通过无监督学习的方式学习语言的结构和规律。具体来说,模型会尝试预测文本序列中的下一个词或短语,从而学习到语言的语法、语义和上下文信息。 微调阶段(也称为下游任务训练):在预训练完成后,模型会被应用到具体的NLP任务中,如文本分类、机器翻译、问答系统等。在这个阶段,模型会使用有标签的数据进行微调,以适应特定任务的需求。通过微调,模型能够学习到与任务相关的特定知识,并进一步提高在该任务上的性能。 GPT模型的优势在于其强大的生成能力和对上下文信息的捕捉能力。这使得GPT模型在自然语言生成、文本摘要、对话系统等领域具有广泛的应用前景。同时,GPT模型也面临一些挑战,如计算资源消耗大、训练时间长等问题。为了解决这些问题,研究人员不断提出新的优化方法和扩展模型架构,如GPT-2、GPT-3等,以进一步提高模型的性能和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值