笔者在学习过程发现,BSDE的解对终端值的依赖性在网上很难找到证明,故在证明后整理如下,希望能给后来者一些便利。
− d Y t = g ( s , Y s , Z s ) d s − Z s d W s , t ∈ [ 0 , T ] -dY_{t}=g(s,Y_{s},Z_{s})ds-Z_{s}dW_{s}, t \in[0,T] −dYt=g(s,Ys,Zs)ds−ZsdWs,t∈[0,T]
Y T = ξ Y_T=\xi YT=ξ
(H1) ∫ 0 T ∣ g ( , 0 , 0 ) ∣ d s \int_{0}^{T}|g( ,0,0)|ds ∫0T∣g(,0,0)∣ds ∈ \in ∈ L 2 ( Ω , F t , P ; R n ) L^2 (\Omega,\mathscr{F_t},P;\mathbb{R}^n) L2(Ω,Ft,P;Rn)
(H2) ∣ g ( t , y , z ) − g ( t , y ′ , z ′ ) ∣ ≤ |g(t,y,z)-g(t,y',z')|\leq ∣g(t,y,z)−g(t,y′,z′)∣≤ C ( ∣ y − y ′ ∣ + ∣ z − z ′ ∣ ) , y ∈ R n