- 博客(142)
- 收藏
- 关注
原创 (四)9. 统计推断-ALMOND算法(模拟实验)
在本文中,我们提出了 ALMOND 框架,用于复杂和大规模潜变量模型的推断。该框架的设计灵感来自统计学与机器学习中的一些最新研究成果:高维潜变量分布通过深度神经网络对低维已知分布的变换被隐式定义;所提出的随机梯度方法尤其适用于复杂模型和大数据场景;同时,Langevin 算法在采样误差控制方面具有良好表现。我们对该算法的理论性质进行了严格分析,多种数值实验结果表明,ALMOND 在潜变量模型推断方面优于许多现有方法。此外,ALMOND 还得益于近年来计算技术的进步。
2025-10-30 22:16:40
58
原创 (四)8. 统计推断-ALMOND算法(收敛性分析)
Langevin 算法在生成所提出的随机梯度中起着核心作用,而该随机梯度又会进一步影响整体算法的收敛性。
2025-09-09 22:04:12
462
原创 (四)7. 统计推断-ALMOND算法(基于神经网络与Langevin扩散的自适应潜变量建模与优化)
本文提出ALMOND框架,通过深度神经网络构建隐式潜变量模型,解决传统参数化方法的局限性。创新点包括:1) 利用DNN将已知分布转换为灵活潜变量分布;2) 基于真实似然函数设计估计方法,保证收敛性;3) 系统性分析Langevin采样偏差并纳入优化过程。理论分析表明该方法适用于复杂模型和大规模数据,实验验证了其有效性。该框架为潜变量建模提供了新思路,减少了定制算法的需求。
2025-09-08 21:54:37
1183
原创 (四)6. 统计推断-ALMOND算法(潜变量模型及其求解方法)
这段内容表达了潜变量模型的一般框架,特别是在数据建模中如何通过潜变量来描述观察数据的生成过程:1.数据建模:每个数据点xix_ixi由一个潜变量uiu_iui来生成,其边际分布fxifxi通过对潜变量进行积分得到。2.潜变量的作用:潜变量uiu_iui帮助捕捉数据中的隐含结构或模式。3.推断问题:模型通常需要估计潜变量的后验分布,以及推断模型参数,这对很多实际问题非常重要。
2025-08-21 15:52:40
997
原创 1. 随机微分方程中耗散性条件的含义
摘要:随机微分方程中的耗散性条件描述了系统对能量或距离差异的抑制特性,表现为漂移项满足压缩性不等式。该条件能保证解的非爆炸性、存在唯一不变测度及长时间稳定性。通过Wasserstein距离分析表明,在耗散性条件下,不同初始条件产生的解会随时间指数收缩收敛。这一性质在证明随机微分方程的稳定性和收敛性方面具有重要作用。
2025-08-06 16:55:07
75
原创 概率论角度: Laplace 算子和分数阶 Laplace 算子
在nnn维欧几里得空间RnRn中,给定一个足够光滑的标量函数fxf(x)fxΔfx∑i1n∂2f∂xi2xΔfx:=i1∑n∂xi2∂2fx∇2fdiv∇f∇2fdiv∇f即梯度的散度。
2025-08-05 12:29:46
1260
原创 基于 Metropolis 的朗之万算法
根据 Besag (1994) 的建议,我们构造了基于 Metropolis 的朗之万算法 (MALA)。
2024-09-08 16:19:00
1417
原创 3. Matérn协方差模型与随机偏微分方程
对应的高斯马尔可夫随机场 (GMRF)可以通过使用某种随机偏微分方程(SPDE)明确构造,当由高斯白噪声驱动时,随机偏微分方程的解是具有 Matérn 协方差函数的高斯场(GF)
2024-07-18 00:08:36
1543
原创 2. 高斯场和高斯马尔可夫随机场
高斯场协方差矩阵计算问题一直是一个瓶颈,有一种方法是用高斯马尔可夫随机场替换高斯场来逼近协方差函数,以此来简化计算上的复杂度。
2024-07-10 12:12:50
2251
原创 3.8. 马氏链-一般状态空间的马氏链(Harris链)
将把从可数状态空间的结果推广到具有不可数状态空间的马尔可夫链的集合中, 称为Harris链
2024-06-18 15:22:41
244
原创 3.5. 马氏链-平稳测度(2)
本节首先介绍平稳测度的定义及其示例, 然后给出可逆测度的定义, 并且说明可逆测度是平稳测度, 初始分布可逆的马氏链, 其对偶马氏链的转移概率和本身的转移概率相同(这也是可逆测度被称为可逆的原因).
2024-06-17 16:59:59
167
原创 3.2. 马氏链-马氏链的构造及马氏性(2)
本节首先构造马氏链, 即构造活动概率空间: 在序列空间中构造$P_x,P_\mu$, 使得在这个概率空间的点为马氏链; 基于该活动概率空间讨论马氏性和强马氏性.
2024-06-16 19:05:04
624
原创 3.2. 马氏链-马氏链的构造及马氏性(1)
本节首先构造马氏链, 即构造活动概率空间: 在序列空间中构造$P_x,P_\mu$, 使得在这个概率空间的点为马氏链; 基于该活动概率空间讨论马氏性和强马氏性.
2024-06-16 19:03:33
178
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅