Din论文阅读

DIN论文阅读

Deep Interest Network for Click-Through Rate Prediction

论文地址 https://arxiv.org/pdf/1706.06978.pdf
在这里插入图片描述
Embedding layer:把高维稀疏的输入转成低维稠密向量, 每个离散特征下面都会对应着一个embedding词典, 维度是 D × K D\times K D×K D D D表示隐向量的维度, K K K表示的是当前离散特征的唯一取值个数

pooling layer and Concat layer: pooling层将用户的历史行为embedding这个最终变成一个定长的向量,因为每个用户历史购买的商品数是不一样的, 也就是每个用户multi-hot中1的个数不一致,这样经过embedding层,得到的用户历史行为embedding的个数不一样多,往往用一个pooling layer先把用户历史行为embedding变成固定长度(统一长度),所以有了这个公式: e i = p o o l i n g ( e i 1 , e i 2 , . . . e i k ) e_i=pooling(e_{i1}, e_{i2}, ...e_{ik}) ei=pooling(ei1,ei2,...eik) 这里的 e i j e_{ij} eij是用户历史行为的那些embedding。 e i e_i ei就变成了定长的向量, 这里的 i i i表示第 i i i个历史特征组, k k k表示对应历史特种组里面用户购买过的商品数量。 Concat layer层把所有的特征embedding向量,从特征维度拼接整合,作为MLP的输入。

MLP:这个就是普通的全连接,用了学习特征之间的各种交互。

Loss: 损失函数用的负的log对数似然: L = − 1 N ∑ ( x , y ) ∈ S ( y log ⁡ p ( x ) + ( 1 − y ) log ⁡ ( 1 − p ( x ) ) ) L=-\frac{1}{N} \sum_{(\boldsymbol{x}, y) \in \mathcal{S}}(y \log p(\boldsymbol{x})+(1-y) \log (1-p(\boldsymbol{x}))) L=N1(x,y)S(ylogp(x)+(1y)log(1p(x)))

下面是找到的相关的代码

class DIN(BaseModel):
    def __init__(self, dnn_feature_columns, history_feature_list, dnn_use_bn=False,
                 dnn_hidden_units=(256, 128), dnn_activation='relu', att_hidden_size=(64, 16),
                 att_activation='Dice', att_weight_normalization=False, l2_reg_dnn=0.0,
                 l2_reg_embedding=1e-6, dnn_dropout=0, init_std=0.0001,
                 seed=1024, task='binary', device='cpu'):
        super(DIN, self).__init__([], dnn_feature_columns, l2_reg_linear=0, l2_reg_embedding=l2_reg_embedding,
                                  init_std=init_std, seed=seed, task=task, device=device)

        self.sparse_feature_columns = list(
            filter(lambda x: isinstance(x, SparseFeat), dnn_feature_columns)) if dnn_feature_columns else []
        self.varlen_sparse_feature_columns = list(
            filter(lambda x: isinstance(x, VarLenSparseFeat), dnn_feature_columns)) if dnn_feature_columns else []

        self.history_feature_list = history_feature_list

        self.history_feature_columns = []
        self.sparse_varlen_feature_columns = []
        self.history_fc_names = list(map(lambda x: "hist_" + x, history_feature_list))

        for fc in self.varlen_sparse_feature_columns:
            feature_name = fc.name
            if feature_name in self.history_fc_names:
                self.history_feature_columns.append(fc)
            else:
                self.sparse_varlen_feature_columns.append(fc)

        att_emb_dim = self._compute_interest_dim()

        self.attention = AttentionSequencePoolingLayer(att_hidden_units=att_hidden_size,
                                                       embedding_dim=att_emb_dim,
                                                       att_activation=att_activation,
                                                       return_score=False,
                                                       supports_masking=False,
                                                       weight_normalization=att_weight_normalization)

        self.dnn = DNN(inputs_dim=self.compute_input_dim(dnn_feature_columns),
                       hidden_units=dnn_hidden_units,
                       activation=dnn_activation,
                       dropout_rate=dnn_dropout,
                       l2_reg=l2_reg_dnn,
                       use_bn=dnn_use_bn)
        self.dnn_linear = nn.Linear(dnn_hidden_units[-1], 1, bias=False).to(device)
        self.to(device)


    def forward(self, X):
        _, dense_value_list = self.input_from_feature_columns(X, self.dnn_feature_columns, self.embedding_dict)

        # sequence pooling part
        query_emb_list = embedding_lookup(X, self.embedding_dict, self.feature_index, self.sparse_feature_columns,
                                          return_feat_list=self.history_feature_list, to_list=True)
        keys_emb_list = embedding_lookup(X, self.embedding_dict, self.feature_index, self.history_feature_columns,
                                         return_feat_list=self.history_fc_names, to_list=True)
        dnn_input_emb_list = embedding_lookup(X, self.embedding_dict, self.feature_index, self.sparse_feature_columns,
                                              to_list=True)

        sequence_embed_dict = varlen_embedding_lookup(X, self.embedding_dict, self.feature_index,
                                                      self.sparse_varlen_feature_columns)

        sequence_embed_list = get_varlen_pooling_list(sequence_embed_dict, X, self.feature_index,
                                                      self.sparse_varlen_feature_columns, self.device)

        dnn_input_emb_list += sequence_embed_list
        deep_input_emb = torch.cat(dnn_input_emb_list, dim=-1)

        # concatenate
        query_emb = torch.cat(query_emb_list, dim=-1)                     # [B, 1, E]
        keys_emb = torch.cat(keys_emb_list, dim=-1)                       # [B, T, E]

        keys_length_feature_name = [feat.length_name for feat in self.varlen_sparse_feature_columns if
                                    feat.length_name is not None]
        keys_length = torch.squeeze(maxlen_lookup(X, self.feature_index, keys_length_feature_name), 1)  # [B, 1]

        hist = self.attention(query_emb, keys_emb, keys_length)           # [B, 1, E]

        # deep part
        deep_input_emb = torch.cat((deep_input_emb, hist), dim=-1)
        deep_input_emb = deep_input_emb.view(deep_input_emb.size(0), -1)

        dnn_input = combined_dnn_input([deep_input_emb], dense_value_list)
        dnn_output = self.dnn(dnn_input)
        dnn_logit = self.dnn_linear(dnn_output)

        y_pred = self.out(dnn_logit)

        return y_pred

    def _compute_interest_dim(self):
        interest_dim = 0
        for feat in self.sparse_feature_columns:
            if feat.name in self.history_feature_list:
                interest_dim += feat.embedding_dim
        return interest_dim


if __name__ == '__main__':
    pass
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值