pytorch 梯度更新过程 请注意,这只是一个简单的示例,实际上的训练过程可能会包含更多的步骤和逻辑,例如数据加载、批量处理、学习率调整等。但是,上述代码片段展示了训练中的核心步骤。优化器根据计算得到的梯度值和设定的优化算法(如随机梯度下降)来更新模型参数。在每次迭代之前,需要将梯度归零,以避免梯度累积影响下一次迭代的计算。通过这三个步骤的循环迭代,可以逐渐优化模型的参数,使其在训练数据上逐渐拟合目标。方法,PyTorch 会自动计算梯度,并将梯度值存储在每个参数的。: 这一步用于计算损失函数关于模型参数的梯度。
解决pytorch训练的过程中内存一直增加的问题 oss['loss'] += loss.item() 以及 eval_loss['loss'] += loss.item()。值得注意的是,要复现内存越来越大的问题,模型中需要切换model.train() 和 model.eval(),train_loss以及eval_loss的作用是保存模型的平均误差(这里是累积误差),保存到tensorboard中。
【调参Tricks】WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach 一个猜测是,预训练语言模型生成的各个句向量应该在坐标系中的各个位置是相对均匀的,即表现出各项同性。以余弦相似度作为向量相似度衡量的指标的是建立在“标准正交基”的基础上的,基向量不同,向量中各个数值所代表的的意义也变不一样。然后经过BERT抽取之后的句向量所处的坐标系可能并非基于同一个“标准正交基”的坐标系。根据苏神的博客,只保留SVD提取出来的前N个特征值可以提升进一步的效果。并且,由于只保留了前N个特征,故与PCA的原理类似,相当于对句向量做了一步降维的操作。
pytorch问题:found at least two devices, cuda:0 and cuda:1! RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:1!
HJ61 放苹果 牛客地址:放苹果'''放苹果分为两种情况,一种是有盘子为空,一种是每个盘子上都有苹果。令(m,n)表示将m个苹果放入n个盘子中的摆放方法总数。1.假设有一个盘子为空,则(m,n)问题转化为将m个苹果放在n-1个盘子上,即求得(m,n-1)即可2.假设所有盘子都装有苹果,则每个盘子上至少有一个苹果,即最多剩下m-n个苹果,问题转化为将m-n个苹果放到n个盘子上,即求(m-n,n)'''def f(m,n): if m<0 or n<0: return .
面试手撕KNN算法 直接上代码# 参考# https://zhuanlan.zhihu.com/p/59755939# https://zhuanlan.zhihu.com/p/165130369from collections import Counterfrom sklearn import datasetsfrom sklearn.model_selection import train_test_splitimport numpy as npiris = datasets.load_iris()
面试手撕kmeans算法 # 直接上代码import randomdef main(data_path, k): # 加载数据 input_list = input_data(data_path) # 初始化聚簇中心 center_list = random_center(input_list, k) # kmeans算法,终止条件为 start中心与end中心一致 result = kmeans(input_list, center_list, k) .
图解AUC和GAUC 转自:图解AUC和GAUC - 知乎网上看过不少关于AUC和GAUC的材料,但是都是文字描述,一点也不直观, 因此萌生了使用图解的方式详细剖析一下AUC和GAUC的想法,也希望以此能帮助大家快速理解概念。其中,说到AUC就不得不提ROC曲线,因此这里分三个部分来解读:ROC、AUC、GAUC。一、ROC前身:通用的对分类模型的评价步骤1:给定样本如图A:其中绿色为正样本,红色为负样本;步骤2:训练一个机器学习模型,然后用这个模型对每个样本计算得到一个预测概率,这个概率值在[0, 1]范围
推荐系统中的bias&&debias:position bias的消偏 原文:推荐系统中的bias&&debias(二):position bias的消偏_贝壳er的博客-CSDN博客前面提到过position bias,即用户倾向于点击排在前面的结果,这使得“优势位置”的item会获得更高的后验点击率。这本质上是和用户的注意力,用户对item的情绪有关,而和用户的真实兴趣无关,这显然是不利用推荐模型的学习的。关于position bias的消偏,主要有以下几种:方法一:将位置信息作为特征加入到模型的输入中这是最简单的一种消偏方式,在训.
CTR/推荐系统中多任务/多目标学习应用概述文章汇总 来源:CTR/推荐系统中多任务/多目标学习应用概述文章汇总 - 知乎1.文章吴海波:电商多目标优化小结(2019.8-267)SunSuc:推荐系统中如何做多目标优化(2019.12-163)梦想做个翟老师:Multi-task多任务模型在推荐算法中应用总结1(2019.12-74)梦想做个翟老师:Multi-task多任务学习在推荐算法中应用(2)(2019.12-152)千寻:Multi-task多任务学习在推荐算法中的应用(2020.3-201)彭红卿:ocp...
刀功:谈推荐系统特征工程中的几个高级技巧 作者:知乎石塔西,原链接刀功:谈推荐系统特征工程中的几个高级技巧 - 知乎前言记得我入算法这一行的第一份工作面试的时候,最终的boss面的面试官是前微软工程院的副院长。面试进行得很顺利,不免向前院长卖弄一番,谈了谈我对算法的理解。我说算法工程师就好比厨师,模型是灶上功夫,而数据预处理+特征工程就好比刀工。再好的食材,不切不洗,一古脑地扔下锅,熟不熟都会成问题,更甭提味道了。好的刀工能够将食材加工成合适的形状,无需烈火烹油,也能做出好味道。同理,特征工程做得好,简单模型也能做出不错的效果,当然有.
Difference between numpy.array shape (R, 1) and (R,) import numpy as npa = np.array([1,2,3,4])print(a)print(a.shape)a.shape = [4, 1]print()print(a)print(a.shape)python - Difference between numpy.array shape (R, 1) and (R,) - Stack Overflow
ERNIE1.0, 2.0模型原理介绍 持续学习语义理解框架ERNIE:https://aistudio.baidu.com/aistudio/projectdetail/1244949ERNIE/ERNIE 2.0 原理解析https://suixinblog.cn/2019/11/ernie.html关于ERNIE更详细的介绍,可以参考这两篇学术论文:ERNIE: Enhanced Representation through Knowledge Integration ERNIE 2.0: A Continual Pre-..
bert中的cls和sep等等 一般我们就用训练集出一个模型,然后可以在其他的代码里读取这个模型来使用。其他的代码就是所谓的下游任务(比如·什么分类、NER什么的)。BERT只是出一个词向量,这个向量不接任务你也看不出什么东西。这种分开训的就叫pipline,如果bert和下游任务一起训就叫end-to-endBERT的输入可以包含一个句子对 (句子 A 和句子 B),也可以是单个句子。此外还增加了一些有特殊作用的标志位:转载[CLS]标志放在第一个句子的首位,经过 BERT 得到的的表征向量 C 可以用于后续的分类任务。[S..