个人兴趣爱好,通过python对微信朋友圈进行了分析,主要对微信好友进行提取,对好友地区分布,签名等进行可视化
需要安装包如下:
pip3 install itchat
pip3 install pandas
pip3 install echarts-countries-pypkg
pip3 install echarts-china-provinces-pypkg
pip3 install echarts-china-cities-pypkg
pip3 install pyecharts
pip3 install jieba
pip3 install wordcloud
pip3 install numpy
获取微信圈好友信息
import itchat
# 按照key得到相关list
def get_attr(friends, key):
return list(map(lambda user: user.get(key), friends))
def get_friends():
itchat.auto_login(hotReload=True)
friends = itchat.get_friends()
users = dict(province=get_attr(friends, "Province"),
city=get_attr(friends, "City"),
nickname=get_attr(friends, "NickName"),
sex=get_attr(friends, "Sex"),
signature=get_attr(friends, "Signature"),
remarkname=get_attr(friends, "RemarkName"),
pyquanpin=get_attr(friends, "PYQuanPin"),
displayname=get_attr(friends, "DisplayName"),
isowner=get_attr(friends, "IsOwner"))
return users
itchat.auto_login(hotReload=True)
登录微信圈好友,hotReload参数表示短时间
内不需要扫码可登陆(在项目下生成itchat.pkl文件),执行上述代码,弹出登录二维码,只需要拿出手机—>扫码登录即可。处理后数据为一个dict
数据分析
好友性别
先来看下朋友圈好友性别比例
import numpy
import pandas as pd
from pyecharts import Pie, Map, Style, Page, Bar
def sex_stats(users):
df = pd.DataFrame(users)
sex_arr = df.groupby(['sex'], as_index=True)['sex'].count()
data = dict(zip(list(sex_arr.index), list(sex_arr)))
data['不告诉你'] = data.pop(0)
data['帅哥'] = data.pop(1)
data['美女'] = data.pop(2)
return data.keys(), data.values()
def create_charts():
users = get_friends()
page = Page()
style = Style(width=1100, height=600)
style_middle = Style(width=900, height=500)
data = sex_stats(users)
attr, value = data
chart = Pie('微信性别') # title_pos='center'
chart.add('', attr, value, center=[50, 50],
radius=[30, 70], is_label_show=True, legend_orient='horizontal', legend_pos='center',
legend_top='bottom', is_area_show=True)
page.add(chart)
page.render()
pandas 为数据分析工具,类似数据库中的表。df.groupby(['sex'], as_index=True)['sex'].count() 按性别统计好友数,Pie为环形图类。一共好友190个,帅哥占比57.37,美女38.42,本人屌丝程序员一枚,所有帅哥比较多
省份分布
再来看看各省份好友分布情况
def prov_stats(users):
prv = pd.DataFrame(users)
prv_cnt = prv.groupby('province', as_index=True)['province'].count().sort_values()
attr = list(map(lambda x: x if x != '' else '未知', list(prv_cnt.index)))
return attr, list(prv_cnt) def create_charts():
def create_charts():
users = get_friends()
data = prov_stats(users)
attr, value = data
chart = Map('中国地图', **style.init_style)
chart.add('', attr, value, is_label_show=True, is_visualmap=True, visual_text_color='#000')
page.add(chart)
chart = Bar('柱状图', **style_middle.init_style)
chart.add('', attr, value, is_stack=True, is_convert=True, label_pos='inside', is_legend_show=True,
is_label_show=True)
page.add(chart)
page.render()
得到各省份好友分布图,主要集中在广东和湖北,工作生活一直在广东。广东好友112个,那么接下来看看广东省主要分布在哪些市
广东省分布
def gd_stats(users):
df = pd.DataFrame(users)
data = df.query('province == "广东"')
res = data.groupby('city', as_index=True)['city'].count().sort_values()
attr = list(map(lambda x: '%s市' % x if x != '' else '未知', list(res.index)))
return attr, list(res)
def create_charts():
users = get_friends()
data = gd_stats(users)
attr, value = data
chart = Map('广东', **style.init_style)
chart.add('', attr, value, maptype='广东', is_label_show=True, is_visualmap=True, visual_text_color='#000')
page.add(chart)
chart = Bar('柱状图', **style_middle.init_style)
chart.add('', attr, value, is_stack=True, is_convert=True, label_pos='inside', is_label_show=True)
page.add(chart)
page.render()
广东省主要分布在珠海、深圳、广州珠三角,因为笔者先后在深圳、珠海工作过
签名词云
先用jieba库对个性签名进行分词
def jieba_cut(users):
signature = users['signature']
words = ''.join(signature)
res_list = jieba.cut(words, cut_all=True)
return res_list
再用WordCloud生成词云
def create_wc(words_list):
res_path = os.path.abspath('./resource')
words = ' '.join(words_list)
back_pic = numpy.array(Image.open("%s/china1.png" % res_path))
stopwords = set(STOPWORDS)
stopwords = stopwords.union(set(['class','span','emoji','emoji','emoji1f388','emoji1f604']))
wc = WordCloud(background_color="white", margin=0,
font_path='%s/hanyiqihei.ttf' % res_path,
mask=back_pic,
max_font_size=70,
stopwords=stopwords
).generate(words)
# image_colors = ImageColorGenerator(back_pic)
plt.imshow(wc)
# plt.imshow(wc.recolor(color_func=image_colors))
plt.axis('off')
plt.show()
分析时发现有些无用词语['class','span','emoji','emoji','emoji1f388','emoji1f604']需要排除,加入停词set。笔者的背景图片和字体放在项目 './resource' 下,注意:font_path必须设置,否则生成为乱码,back_pic为背景图片形状
通过图片可以看到最大词汇为世界、自己、生活,说明朋友还是比较正能量
至此,对朋友圈好友进行了大概分析
源码地址:https://github.com/TreasureGitHub/weixin_fenxi
执行代码,用微信扫一扫吧,少年!