YOLOv8优化策略:注意力机制涨点系列篇| 多维协作注意模块MCA,效果秒杀ECA、SRM、CBAM等

本文介绍了将多维协作注意模块(MCA)应用于YOLOv8的优化策略,通过MCA提升模型性能,超越ECA、SRM、CBAM等注意力机制。详细步骤包括MCA模块的实现、注册和配置文件修改。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 🚀🚀🚀本文改进:多维协作注意模块MCA,暴力涨点,效果秒杀ECA、SRM、CBAM

 🚀🚀🚀YOLOv8改进专栏:http://t.csdnimg.cn/hGhVK

学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;

1.原理介绍

 2.MCA加入到yolov8

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会AI的学姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值