数据闭环与AutoLabeling方案总结!(Waymo/Uber/Open MMLab)

作者 | AmazingRoad  编辑 | 汽车人

原文链接:zhuanlan.zhihu.com/p/587140851

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

点击进入→自动驾驶之心【全栈算法】技术交流群

后台回复【标定工具】获取2D检测/分割/关键点,3D点云检测分割标注工具!

1什么是数据闭环

自动驾驶中的数据闭环,是指算法研发由case-driven转向data-driven的核心步骤。我大概整理了下数据闭环的链路,如下图所示:

282f345fe17c60cb77bb797d869995bc.png
数据闭环链路
  • 链路中的环节包含工具链路打通和算法开发两部分。

  • 算法开发主要有数据挖掘、数据标注、模型优化这三部分。

  • 这里面数据标注中的自动标注,即AutoLabeling是目前数据闭环中最为核心的部分。

  • 数据挖掘和模型优化,也是需要攻克和解决的点,只不过从成本和效率上,目前优先级没有自动标注高。

2AutoLabeling方案

以下的讨论以目标检测任务为例。

Pipeline

  • 目标检测任务的主要pipeline流程包含目标检测、轨迹生成、轨迹优化三部分

  • 其中目标检测模型、MOT算法,都有比较成熟的算法,所以AutoLabeling中创新点主要体现在轨迹优化这个步骤。

47574e2b3c7425c779468080e1896466.png
AutoLabeling Pipeline

学术界的SOTA

目前关于AutoLabeling的完整方案方面的论文不是很多,这里面比较有代表性的有:

  • 谷歌的Waymo在2021年发表的:《Offboard 3D Object Detection from Point Cloud Sequences》

  • Uber的ATG(Advanced Technology Group)在2021年发表的:《Auto4D: Learning to Label 4D Objects from Sequential Point Clouds》

  • Open MMLab在2022年发表的:《MPPNet: Multi-Frame Feature Intertwining with Proxy Points for 3D Temporal Object Detection》

下面对这三篇文章做了个简单地总结和对比:

论文机构轨迹优化的方法发表年限
Auto4DUberBEV空间特征2021.01
Offboard3DWaymoPoint-Based2021.03
MPPNetOpenMMLabFormer(基于Attention)2022

Auto4D的轨迹优化

  • Size Branch: 累积全轨迹点(时域信息忽略),BEV编码,得到全局的稳定size。

  • Update:基于最近corner align,更新全轨迹的box属性。

  • Path Branch:累积全轨迹点(保留时域信息,但时域和高度channel合并),BEV编码,得到相邻帧位移

c64c071162481fbcc9db3009d7f3fdfc.png

Offboard3D的轨迹优化处理

  • 动静态判断:box中心点方差<1m/s^2,首尾帧中心点偏移<1m,则为静态,否则为动态。

  • 静态轨迹优化:前背景分割网络对box周围的原始点进行分割,box回归网络得到box属性(基于PointNet)

  • 动态轨迹优化:对于点进行前背景分割+点序列编码,对于框进行序列编码,最后加2层box回归网络。

3d3805cf630388042770d4562a0bd5bb.png

MPPNet

  • 选取代理点:每个框均匀选择代理点(4x4x4)

  • 单帧提取特征:提取几何特征、运动特征

  • 组内特征编码:x、y、z、c通道分割使用MLP进行feature mixing

  • 组间特征编码:使用Former结构,共享K、V,进行feature mixing

  • 3D检测头:使用Tranformer Decoder

fb87d373145edfe2bfa3ce568e351799.png

往期回顾

Make RepVGG Greater Again!揭示重参化量化崩溃根因并解决(美团)

788b9ae924c7b4fb895ba282629b930a.png

自动驾驶之心】全栈技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多传感器融合、SLAM、光流估计、深度估计、轨迹预测、高精地图、规划控制、模型部署落地、自动驾驶仿真测试、硬件配置、AI求职交流等方向;

2962b098f70c63cabb1a3c35e0ee411a.jpeg

添加汽车人助理微信邀请入群

备注:学校/公司+方向+昵称

自动驾驶之心【知识星球】

想要了解更多自动驾驶感知(分类、检测、分割、关键点、车道线、3D目标检测、多传感器融合、目标跟踪、光流估计、轨迹预测)、自动驾驶定位建图(SLAM、高精地图)、自动驾驶规划控制、领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球(三天内无条件退款),日常分享论文+代码,这里汇聚行业和学术界大佬,前沿技术方向尽在掌握中,期待交流!

996732cc82675b44cf5e845e197c0187.jpeg

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Uber纽约市乘车数据的可视化分析与设计是一项重要的任务,它可以帮助我们更好地理解乘客和司机的行为模式以及整个交通网络的运行情况。以下是针对该主题的300字中文回答: 在Uber纽约市乘车数据的可视化分析与设计方面,首先需要收集和整理大量的数据。这些数据包括乘客和司机的行程起止地点、乘车时间、乘车距离、费用等信息。然后,利用数据分析工具,对这些数据进行统计和分析,以提取有用的信息。 一种常见的可视化分析方式是通过地图展示乘车数据的分布情况。可以利用纽约市的地图底图,将乘车起止地点标记在地图上,采用不同的颜色、形状或大小来表示乘车次数或乘车密度。这样一来,我们可以直观地看到乘车热点和流量分布的情况,从而帮助我们优化乘车服务的分配和调度。 除了地图展示,还可以通过折线图或柱状图展示乘车数据的时间变化趋势。可以按照小时、日期、星期几等时间维度,统计乘车次数或乘车费用的变化情况。这样可以发现乘车高峰和低谷的时段,为乘车服务的优化提供数据支持。 另外,还可以对乘车数据进行空间分析,比如利用热力图展示不同地区的乘车活跃度,或者利用流向图展示不同地区之间的乘车流量。这些空间分析可以帮助我们发现交通拥堵的瓶颈区域,或者调整司机派单策略,提高乘车效率。 总之,Uber纽约市乘车数据的可视化分析与设计是一项复杂而有益的工作。通过合理运用可视化工具和技术,可以帮助我们更好地理解和优化乘车服务,提高城市的出行效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值