CVPR 2023 | 基于多视图投影和方向一致性的弱监督单目3D检测

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

点击进入→自动驾驶之心【目标检测】技术交流群

后台回复【3D检测综述】获取最新基于点云/BEV/图像的3D检测综述!

论文思路:

单目3D目标检测由于其应用简单,已成为自动驾驶的主流方法。一个突出的优点是在推理过程中不需要LiDAR点云。然而,目前的大多数方法仍然依赖于3D点云数据来标记训练阶段使用的ground truths。这种训练与推理的不一致使得大规模的反馈数据(large-scale feedback data)难以利用,增加了数据收集的费用。为了弥补这一缺陷,本文提出了一种新的弱监督单目三维目标检测方法,该方法仅用在图像上标注的二维标签来训练模型。具体来说,本文在这个任务中探索了三种类型的一致性,即投影一致性、多视图一致性和方向一致性,并基于这些一致性设计了一个弱监督架构。此外,本文提出了一种新的二维方向标注方法(2D direction labeling method)来指导模型进行准确的旋转方向预测。实验表明,本文的弱监督方法与一些完全监督方法具有相当的性能。当被用作预训练方法时(When used as a pre-training method),本文的模型仅使用1/3的3D标签就能显著优于相应的全监督基线。

主要贡献:

本文提出了一种新的单目3D目标检测的弱监督方法,该方法只将二维标签作为ground truth,而不需要任何三维点云进行标记。据本文所知,本文是第一个在这个任务中完全避免3D点云依赖的工作。

本文将投影一致性和多视图一致性引入到该任务中,并设计了两个一致性损失来指导基于它们的精确3D bounding boxes的预测。

本文提出了一种新的标注方法叫2D direction label,来代替点云数据上标注的3D rotation label以及基于新标签的方向一致性损失。

在本文的实验中,提出的弱监督方法取得了与一些全监督方法相当的性能。本文还微调本文的模型与小比例的3D ground truth。结果表明,即使只有1/3的ground truth标签,本文的方法也可以比相应的全监督基线获得更好的性能,展示了基于反馈生产数据改进模型的潜力。

网络设计:

53431703e246d04c17ae79b236d03e91.png

图2。提出的方法的体系结构。左栏显示,在训练阶段,将来自不同视点的图像对送入检测模型,在预测和2Dground truth之间计算4个损失。右列显示投影一致性和多视图一致性的详细信息。为了计算投影一致性损失,本文将预测的box投影到二维图像中,并将其转换为二维box,最后计算二维box与二维box标签的差值。为了计算一致性损失,本文首先将从视点1预测的3Dbox转换为视点2的坐标系,然后计算转换后的box与视点2预测的box的差值。

a5c56a7e667dd935f935d8808246202a.png

图1。投影和多视图的一致性的可视化。(a)由于投影损失在三维空间中有多个最优解,仅靠投影一致性无法确定目标的准确位置。例如,3D空间中的两个虚线框产生相同的投影损失,因为它们在2D空间中有相同的投影。(b)在多视图一致性的约束下,最优解必须是两个视点的共同解,即目标位置。

实验结果:

444a22957291750c3a999b0a407f85b2.png 7f05c62026483c632c312bd06d5aa51b.png 4e1827d3226541b3e6685a3791cd28a2.png fc50a26e17938aee83ae8695cd2f9994.png f9040a45d090b07d22e91a7f63a799f0.png 42ba9f54e99e4ca624625ad73ca5365a.png

视频课程来了!

自动驾驶之心为大家汇集了毫米波雷达视觉融合、高精地图、BEV感知、传感器标定、传感器部署、自动驾驶协同感知、语义分割、自动驾驶仿真、L4感知、决策规划、轨迹预测等多个方向学习视频,欢迎大家自取(扫码进入学习)

26588dc170baba91b06c00111c07f772.png

(扫码学习最新视频)

国内首个自动驾驶学习社区

近1000人的交流社区,和20+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(分类、检测、分割、关键点、车道线、3D目标检测、Occpuancy、多传感器融合、目标跟踪、光流估计、轨迹预测)、自动驾驶定位建图(SLAM、高精地图)、自动驾驶规划控制、领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

4fa027fe5ed79ca43d2aef0c5d287311.jpeg

自动驾驶之心】全栈技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多传感器融合、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向;

6f6a783264a8ca8bf74d54ed15f8cc5e.jpeg

添加汽车人助理微信邀请入群

备注:学校/公司+方向+昵称

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值