点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
点击进入→自动驾驶之心【目标检测】技术交流群
后台回复【3D检测综述】获取最新基于点云/BEV/图像的3D检测综述!
论文思路:
单目3D目标检测由于其应用简单,已成为自动驾驶的主流方法。一个突出的优点是在推理过程中不需要LiDAR点云。然而,目前的大多数方法仍然依赖于3D点云数据来标记训练阶段使用的ground truths。这种训练与推理的不一致使得大规模的反馈数据(large-scale feedback data)难以利用,增加了数据收集的费用。为了弥补这一缺陷,本文提出了一种新的弱监督单目三维目标检测方法,该方法仅用在图像上标注的二维标签来训练模型。具体来说,本文在这个任务中探索了三种类型的一致性,即投影一致性、多视图一致性和方向一致性,并基于这些一致性设计了一个弱监督架构。此外,本文提出了一种新的二维方向标注方法(2D direction labeling method)来指导模型进行准确的旋转方向预测。实验表明,本文的弱监督方法与一些完全监督方法具有相当的性能。当被用作预训练方法时(When used as a pre-training method),本文的模型仅使用1/3的3D标签就能显著优于相应的全监督基线。
主要贡献:
本文提出了一种新的单目3D目标检测的弱监督方法,该方法只将二维标签作为ground truth,而不需要任何三维点云进行标记。据本文所知,本文是第一个在这个任务中完全避免3D点云依赖的工作。
本文将投影一致性和多视图一致性引入到该任务中,并设计了两个一致性损失来指导基于它们的精确3D bounding boxes的预测。
本文提出了一种新的标注方法叫2D direction label,来代替点云数据上标注的3D rotation label以及基于新标签的方向一致性损失。
在本文的实验中,提出的弱监督方法取得了与一些全监督方法相当的性能。本文还微调本文的模型与小比例的3D ground truth。结果表明,即使只有1/3的ground truth标签,本文的方法也可以比相应的全监督基线获得更好的性能,展示了基于反馈生产数据改进模型的潜力。
网络设计:

图2。提出的方法的体系结构。左栏显示,在训练阶段,将来自不同视点的图像对送入检测模型,在预测和2Dground truth之间计算4个损失。右列显示投影一致性和多视图一致性的详细信息。为了计算投影一致性损失,本文将预测的box投影到二维图像中,并将其转换为二维box,最后计算二维box与二维box标签的差值。为了计算一致性损失,本文首先将从视点1预测的3Dbox转换为视点2的坐标系,然后计算转换后的box与视点2预测的box的差值。

图1。投影和多视图的一致性的可视化。(a)由于投影损失在三维空间中有多个最优解,仅靠投影一致性无法确定目标的准确位置。例如,3D空间中的两个虚线框产生相同的投影损失,因为它们在2D空间中有相同的投影。(b)在多视图一致性的约束下,最优解必须是两个视点的共同解,即目标位置。
实验结果:






视频课程来了!
自动驾驶之心为大家汇集了毫米波雷达视觉融合、高精地图、BEV感知、传感器标定、传感器部署、自动驾驶协同感知、语义分割、自动驾驶仿真、L4感知、决策规划、轨迹预测等多个方向学习视频,欢迎大家自取(扫码进入学习)
(扫码学习最新视频)
国内首个自动驾驶学习社区
近1000人的交流社区,和20+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(分类、检测、分割、关键点、车道线、3D目标检测、Occpuancy、多传感器融合、目标跟踪、光流估计、轨迹预测)、自动驾驶定位建图(SLAM、高精地图)、自动驾驶规划控制、领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!
【自动驾驶之心】全栈技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多传感器融合、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向;
添加汽车人助理微信邀请入群
备注:学校/公司+方向+昵称