点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
自动驾驶之心的好朋友孔令东博士在ICCV 2O23现场传来了ICCV最佳论文的第一手消息,感谢孔博,让我们一起看看今年ICCV最佳论文奖花落谁家!
Best Student Paper
最佳学生论文OmniMotion!康奈尔大学、Google Research和UC Berkeley的工作!长视频跟踪再上一层楼!


OmniMotion提出了一种新的测试时间优化方法,用于从视频序列中估计密集和长距离运动。现有的光流或粒子视频跟踪算法通常在有限的时间窗口内运行,难以通过遮挡进行跟踪并保持估计的运动轨迹的全局一致性。本文提出了一种完整且全局一致的运动表示,称为OmniMotion,可以对视频中的每个像素进行准确、全长度的运动估计。OmniMotion使用类3D规范体积表示视频,并通过局部空间和规范空间之间的双射执行逐像素跟踪。这种表示使我们能够确保全局一致性,处理跟踪遮挡,并对相机和目标运动的任何组合进行建模。对TAP-Vid基准和真实世界场景的广泛测试表明,OmniMotion在数量和质量上都大大优于现有的最先进方法。
项目主页:https://omnimotion.github.io/
Best Paper Honorable Mention
今年CV什么最火,无疑是大模型!分割一切(Segment Anything)虽然未能摘得桂冠,但也有最佳论文荣誉提名奖!Meta AI、FAIR出品~


本文介绍了Segment Anything(SA):一个用于图像分割的新任务、模型和数据集。在数据收集循环中使用我们的高效模型,我们构建了迄今为止(迄今为止)最大的分割数据集,1100万张图片标注了超过10亿个mask。该模型被设计和训练为可提示的,因此它可以将零样本转换为新的图像分布和任务。我们对其在许多任务中的能力进行了评估,发现其零样本性能令人印象深刻——通常与之前全监督的结果相媲美,甚至优于之前的结果。
项目主页:https://segment-anything.com/
Best Paper
斯坦福的扩散模型ControlNet荣获最佳论文奖之一!恭喜~


本文提出了ControlNet,这是一种神经网络架构,用于将空间条件控制添加到大型预训练的文本到图像扩散模型中。ControlNet锁定了可生产的大型扩散模型,并将其用数十亿张图像预训练的深度和稳健的编码层重新用作学习各种条件控制的强大主干。神经架构与“零卷积”(零初始化的卷积层)相连,该卷积层从零开始逐渐增长参数,并确保没有有害噪声会影响微调。我们使用稳定扩散测试各种条件控制,例如边缘、深度、分割、人体姿势等,使用单个或多个条件,无论是否有提示。我们证明了ControlNets的训练对于小(<50k)和大(>1m)数据集是稳健的。广泛的结果表明,ControlNet可以促进更广泛的应用来控制图像扩散模型。
代码链接:https://github.com/lllyasviel/ControlNet
Best Paper
多伦多大学也荣获最佳论文奖!论文目前还未公开,我们拭目以待~

① 全网独家视频课程
BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)

② 国内首个自动驾驶学习社区
近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】平台矩阵,欢迎联系我们!