ICCV 2023开源 | 最新跟踪一切!分割一切视频版来了!

DEVA是一种新型的视频分割跟踪方法,通过解耦的图像分割和通用的双向时间传播,实现低训练数据需求和跨任务泛化。该方法在大词汇量视频目标分割、开放世界视频分割等任务中表现出色,且开源可供尝试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:泡椒味的口香糖 | 来源:3D视觉工坊

添加微信:dddvisiona,备注:SLAM,拉你入群。文末附行业细分群。

0. 笔者个人体会

视频分割相较于图像分割,最大难点在于长序列中相同类别的数据关联,也就是如何保证这一帧分割出的目标,下一帧还能稳定分割。传统的端到端视频跟踪模型,主要还是遵循一个"检测跟踪"的范式,然后使用短时模块来关联帧间分割。这种方法的缺点是对误检很敏感,而且很难处理长序列,对训练数据的要求也非常大。

今天笔者将为大家带来一项新的"跟踪一切"的工作DEVA,与之前的"跟踪一切"不同,这篇文章不是跟踪像素,也不是目标跟踪,而是目标分割跟踪。DEVA实际上是对SAM的扩展,首先对视频帧进行分割,然后使用一项新的双向传播机制来实现帧间分割的关联,对训练数据的需求量非常低,效果非常好,而且很容易泛化到各个下游任务中。

1. 效果展示

DEVA可以进行鲁棒的全视频全景分割跟踪,保持帧间一致性,轻松应对各种复杂场景。

ICCV (International Conference on Computer Vision) 是计算机视觉领域的重要国际会议,每年都会汇聚最新的研究成果。ICCV 2023 本中,医学图像分割作为其中一个热门研究方向,关注的是如何使用计算机视觉技术来自动分析分割医学影像中的结构或病变,这对于疾病诊断、手术规划治疗效果评估具有重要意义。 在ICCV 2023上,可能会探讨以下几个方面: 1. **深度学习方法**:深度学习特别是卷积神经网络(CNN)递归神经网络(RNN)在医学图像分割中的应用会持续发展,比如U-Net、SegNet、Unet++等模型的改进集成。 2. **弱监督半监督学习**:减少标注数据的需求,通过利用大量未标注或部分标注的图像来提升分割性能。 3. **注意力机制**:自注意力机制可能会被用于更精准地聚焦于图像中的关键区域,提高分割的精度。 4. **医学图像的多模态融合**:结合不同类型的医学图像,如CT、MRI、PET等,以获得更全面的特征信息。 5. **迁移学习与预训练模型**:利用预训练在大规模数据集(如ImageNet)上的模型,然后在医疗领域的特定任务上微调。 6. **算法评估与挑战**:如何设计有效的评价指标基准,以及组织针对特定医学图像分割任务的比赛。 相关问题--: 1. ICCV 2023中有哪些新型的医学图像分割算法被提出? 2. 在医学图像分割中,如何处理数据不平衡的问题? 3. 有没有在ICCV 2023上展示的成功案例,证明了医学图像分割技术的实际临床价值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值