作者:泡椒味的口香糖 | 来源:3D视觉工坊
添加微信:dddvisiona,备注:SLAM,拉你入群。文末附行业细分群。
0. 笔者个人体会
视频分割相较于图像分割,最大难点在于长序列中相同类别的数据关联,也就是如何保证这一帧分割出的目标,下一帧还能稳定分割。传统的端到端视频跟踪模型,主要还是遵循一个"检测跟踪"的范式,然后使用短时模块来关联帧间分割。这种方法的缺点是对误检很敏感,而且很难处理长序列,对训练数据的要求也非常大。
今天笔者将为大家带来一项新的"跟踪一切"的工作DEVA,与之前的"跟踪一切"不同,这篇文章不是跟踪像素,也不是目标跟踪,而是目标分割跟踪。DEVA实际上是对SAM的扩展,首先对视频帧进行分割,然后使用一项新的双向传播机制来实现帧间分割的关联,对训练数据的需求量非常低,效果非常好,而且很容易泛化到各个下游任务中。
1. 效果展示
DEVA可以进行鲁棒的全视频全景分割跟踪,保持帧间一致性,轻松应对各种复杂场景。