作者 | 电光幻影炼金术 编辑 | 汽车人
原文链接:https://www.zhihu.com/question/542598526/answer/2571518077
点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
点击进入→自动驾驶之心【全栈算法】技术交流群
本文只做学术分享,如有侵权,联系删文
一个简单的衡量标准:能够给多少新的研究者饭吃,就有多少novelty。
非常差的文章:完全炒旧饭,整篇文章读下来没有一点启发,甚至没有前人的工作好,不仅不能给新的研究者饭吃,老的研究者看着都生气,甚至死去的研究者都恨不得爬起来给作者两刀。新的研究者看了,只会被误导或者浪费生命。这种就直接给毙了。
一般差的文章:跟在别人屁股后面跑,抓到一两个新的概念(比如transfomer),不加多想调一调参数就直接提交论文,只是纯纯的内卷,没有提供一个新的研究机会。新的研究者看了,口吐鲜血,感叹道又少一个可以占的坑位。这种比较难中稿,如果有其他优点也可能中。
中等的文章:利用一些比较新的概念比如transformer,在一些比较新的领域做应用,并且有自己比较深入的思考和发现。新的研究者看了,觉得原来还能这么玩。有一小批研究者能从中受到启发,做出更好玩的玩法。这种是比较常见的玩法,也是市面上能见到的大部分论文的样子。还有一种中等文章是研究的路子过于小众或过偏,虽然也有新意,但是大部分人没有兴趣,也很难吸引新的研究者。
较好的文章:能够提出一些创新的概念,或者提出一种新的任务结构,让数十个研究者不再卷原来的任务/方向,而能沿着新的路子继续研究下去。这样的文章可以算是比较好的文章,审稿人一见了就眼睛发亮。
非常好的文章:开辟一个新领域,让数百个上千个研究者沿着新的方向做下去,并且成为改变科研文化甚至人类生活的颠覆性工作。能养活一个领域成千上万的研究者,功德无量。这样的工作可能审稿人审十年都碰不着一个,能审到这样的文章是审稿人的幸运。
评论区里有提到last paper,就是结束一个领域的文章。在我看来这种文章也属于较好的文章或者非常好的文章。为什么这么说呢?以我的亲身经历,一般有一个文章非常好能够终结一个领域的话,一般后面都会有很多文章把这个工作用到子领域,或者有大量文章来研究这篇文章为什么能有效,或者有大量文章来分析哪些模块其实是不必须的。从这个角度来讲,last paper也是可以喂饱很多新研究者的。
① 全网独家视频课程
BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)

② 国内首个自动驾驶学习社区
近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】平台矩阵,欢迎联系我们!