(二)傅里叶变换:傅里叶/离散傅里叶变换DFT推导及FFT降噪matlab仿真

目录

前言

1. 从傅里叶级数到傅里叶变换

2. 傅里叶变换的几个重要结论

2.1 使用傅里叶变换求导

2.2 傅里叶转换与卷积

2.3 傅里叶转换的线性

2.4 Parseval定理

3. 离散傅里叶变换DFT

4. 快速傅里叶变换FFT

5. 使用FFT算法进行信号降噪-Matlab

结语


前言

本篇涉及从傅里叶级数到傅里叶变换的推导,离散傅里叶变换(DFT)推导,快速傅里叶变换(FFT)在matlab中对于降噪场景的仿真。

1. 从傅里叶级数到傅里叶变换

回到上一篇的三角信号图,上篇我们推导出一个以2L为周期的函数f(x),在区间[L,L]中,以复数下的傅里叶级数展开式为:

f(x)=\sum_{k=-\infty }^{+\infty }C_{k}e^{i\frac{k\pi}{L}x}   (1)

C_{k}=\frac{1}{2L}\int_{-L}^{L}f(x)e^{-i\frac{k\pi}{L}x}dx   (2)

现在,我们令\omega _{k}=\frac{2\pi}{T}k=\frac{2\pi}{2L}k=\frac{\pi}{L}k=\Delta \omega k,以三角函数的知识,我们知道这个\omega _{k}其实就是对于每一阶级数的频率值,放到圆周运动里就是转速,而\Delta \omega是不同阶数间的频率差,是固定值。现在我们设想,先前我们的级数展开都基于函数是个周期为T的周期函数,但现实中的信号是很不规律的,很难是完美的周期函数,每个信号相当于就一个周期,周期范围是(-∞,+∞),那我们不妨令L→+∞,这样就有\Delta \omega→0,通过这样变形,我们就可以把f(x)变换成黎曼积分形式:

f(x)=\sum_{k=-\infty }^{+\infty }C_{k}e^{i\frac{k\pi}{L}x}\\ \ =\frac{\Delta \omega }{2\pi}\sum_{k=-\infty }^{+\infty }\int_{-\infty }^{+\infty}f(t)e^{-i\Delta \omega kt}dt\cdot e^{i\Delta \omega kx}\\ =\frac{1 }{2\pi}\sum_{k=-\infty }^{+\infty }\int_{-\infty }^{+\infty}f(t)e^{-i\omega t}dt \Delta \omega\cdot e^{i\omega x}\\ =\frac{1 }{2\pi}\int_{-\infty }^{+\infty}\int_{-\infty }^{+\infty}f(t)e^{-i\omega t}dt \cdot e^{i\omega x}d\omega    (3)

通过如上变形,我们实际上就得到了在非周期函数(即周期无穷大)的傅里叶展开式,我们把中间这个积分块:

\hat{f}(\omega )=\int_{-\infty }^{+\infty}f(x)e^{-i\omega t}dx (4)

就叫做f(x)的傅里叶变换,其实就是我们在级数展开时的Ck去掉1/T,回忆一下上篇对傅里叶级数的推导,它的实际物理意义是函数f(x)在(-∞,+∞)区间内在e^{-i\omega t}上的投影,也即在整个(-∞,+∞)内频率\omega对信号有多少贡献,一般说是把时域信号转化成了频域信号,写作:

\hat{f}(\omega )= \mathcal{F}(f(x))=\int_{-\infty }^{+\infty}f(x)e^{-i\omega x}dx   (5)

另外很明显(3)式是有对称性的,如果我们对再进行一次傅里叶变换,就回到了时域信号,于是又有:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值