目录
前言
本篇涉及从傅里叶级数到傅里叶变换的推导,离散傅里叶变换(DFT)推导,快速傅里叶变换(FFT)在matlab中对于降噪场景的仿真。
1. 从傅里叶级数到傅里叶变换
回到上一篇的三角信号图,上篇我们推导出一个以2L为周期的函数f(x),在区间[L,L]中,以复数下的傅里叶级数展开式为:
(1)
(2)
现在,我们令,以三角函数的知识,我们知道这个
其实就是对于每一阶级数的频率值,放到圆周运动里就是转速,而
是不同阶数间的频率差,是固定值。现在我们设想,先前我们的级数展开都基于函数是个周期为T的周期函数,但现实中的信号是很不规律的,很难是完美的周期函数,每个信号相当于就一个周期,周期范围是(-∞,+∞),那我们不妨令L→+∞,这样就有
→0,通过这样变形,我们就可以把f(x)变换成黎曼积分形式:
(3)
通过如上变形,我们实际上就得到了在非周期函数(即周期无穷大)的傅里叶展开式,我们把中间这个积分块:
(4)
就叫做f(x)的傅里叶变换,其实就是我们在级数展开时的Ck去掉1/T,回忆一下上篇对傅里叶级数的推导,它的实际物理意义是函数f(x)在(-∞,+∞)区间内在上的投影,也即在整个(-∞,+∞)内频率
对信号有多少贡献,一般说是把时域信号转化成了频域信号,写作:
(5)
另外很明显(3)式是有对称性的,如果我们对再进行一次傅里叶变换,就回到了时域信号,于是又有: