编辑 | ADS智库
点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
点击进入→自动驾驶之心技术交流群
本文只做学术分享,如有侵权,联系删文
汽车智能化已然成为行业发展趋势,智能驾驶正在加速融入我们的生活,ADAS功能逐渐成为各类新款车型的标配,近年来,“行泊一体”概念也成为行业内热门话题,越来越多的厂商开始着重发力于研发“行泊一体”方案。我们看到,现阶段智能汽车行业正在大规模力推无限接近于L3的L2++或L2.9自动驾驶量产落地。在这一过程中,各种新技术层出不穷,而融合众多新技术的“行泊一体”方案受到车企们的推崇。
从本质上来说,行泊一体是行车场景与泊车场景的打通,需要实现包括拥堵跟车、自动变道、高速巡航、上下匝道、自动泊车等一系列技术打通,实现关键技术主要包括感知与定位、决策与规划、控制与执行等,行泊一体方案是ADAS向高阶自动驾驶进阶的必经之路。
自动驾驶常用功能场景
在日常的城市用车过程中常常遇到各种各样的行车泊车场景,根据不同路段的行车泊车场景,组成了智能汽车常见的智能驾驶功能包括:
行车场景:
ACC,自适应巡航控制;ALC,自动变道辅助;TJA,交通拥堵辅助;LCC车道居中;NOA,领航辅助;
泊车场景:
APA,自动泊车辅助功能;RPA,遥控泊车辅助;SS,智能召唤功能;HPA,记忆泊车功能;AVP,自主代客泊车。
行泊一体发展形态及优势
我们可以看到,要实现上述自动驾驶行车、泊车的功能,现阶段市场上大部分车型采用传统的分布式ADAS ECU(比如,智能摄像头一体机、泊车控制器、全景环视控制器)行泊分离式域控制器,即行车域控和泊车域控相分离,行车与泊车调用各自芯片和传感器。然而随着整车电子电气架构由分布式向域集中式演进,以及传感器和域控制器共用技术的成熟,正进一步加快“行泊一体”方案的量产落地。
相较行泊分离方案,行泊一体方案具备如下优势:
传感器共用,性能得到提升
提升软件开发效率,底层软件、中间件更通用,还可单独定制不同算法模块功能;
方便功能迭代,行泊一体域控制器通过部署分层式的软件架构,实现软硬件解耦,配备有百兆甚至千兆以太网接口,并且有更多的算力支持高级算法模型的部署,因此能够更好地支持功能的OTA升级。
降本增效,复用了控制器算力,节省控制器的硬件成本,简化域控制器的硬件接口,减少布线长度,进而有效降低整车的复杂度,降低整个控制器的生产成本。
① 全网独家视频课程
BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)

② 国内首个自动驾驶学习社区
近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】平台矩阵,欢迎联系我们!