点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
阿波罗官网:https://apollo.baidu.com/
12月19日,百度正式推出了Apollo开放平台的全新升级版本——Apollo开放平台9.0,面向所有开发者和生态合作伙伴需求,以更强的算法能力、更灵活易用的工具框架,以及更易拓展的通用场景能力,继续构筑自动驾驶开发的领先优势。
自动驾驶之心也观察到,Apollo开放平台自2017年正式推出后,经过反复的打磨与适配,为自动驾驶和智能汽车领域提出了众多业内领先的解决方案。完善的学习社区、丰富的功能组件和插件,各类标定工具以及强大的场景通用能力使得Apollo开放平台成为各大主机厂、tier1、硬件/创业公司的首选,快速支持功能模块和系统的搭建。
灵活易上手,快速搭建自己的自动驾驶系统
Apollo开放平台自上线以来始终保持高频迭代,从工程框架的持续优化,到开发者的灵活易用性,再到通用场景的落地能力,始终不断突破能力边界。百度自动驾驶平台生态部总经理张亮总结了这次升级的主要亮点:“Apollo开放平台9.0在工程、算法和工具方面实现了全面升级,通用层可赋能多种应用场景的规模化落地,整体操作更加灵活易上手,使用场景上通用易拓展。极大提升开发效率的同时,可帮助更多开发者快速搭建属于自己的自动驾驶系统。”
工程框架方面,为了使开发者更灵活组装自动驾驶应用和更便利地二次开发,Apollo开放平台9.0对包管理进行全面升级,将模块按照功能的粒度拆分成更小的软件包,开发者可以更加方便地根据自己的需求选择使用。同时还提供各种丰富的功能组件及插件,并对功能扩展进行了提升和优化。基于此,统一调度接口后,开发者最快1天内即可完成场景Demo搭建,调参方式简化使得调参效率提升1倍,新增插件机制让代码学习成本可降低90%的同时代码量降低50%,大大提高了Apollo的二次开发能力。Apollo开放平台9.0还首次适配了ARM架构。
算法方面,Apollo开放平台9.0在此前的基础上优化了感知算法,Lidar检测采用了比较新的CenterPoint模型,视觉上采用了Yolo X + Yolo 3D模型,对这两个模型灌入百万级数据训练,召回率和精准率都有大幅提升。而且还提供了增量训练,支持独立自主完成模型训练,可在维持模型原有检测能力的前提下,显著提升特殊目标和特殊场景的检测能力,从而达到用较低成本轻松提升定制场景的检测效果。另外,全面支持4D毫米波雷达,障碍物检测和极端天气场景安全性都得到了极大增强。
4D毫米波雷达将会是未来自动驾驶量产方案的主流,不得不说Apollo紧跟潮流,支持丰富的传感器选择,在极端恶劣天气下也能支持安全功能。
工具方面,除了在原有工具的基础上新增功能外,还新增了包括高精地图制图、传感器标定和集成等工具。Apollo开放平台9.0全新升级的Dreamview+在多场景使用、自由布局、数据资源等多个方面进行了全面提升,调试流程更简洁、窗口布局更灵活、资源取用更方便。
此外,Apollo开放平台9.0还重构了文档平台,实现操作更便捷,阅读更顺畅,内容更充实,有效降低了开发者的学习使用成本。
开箱即用!通用层赋能多种使用场景规模化落地
此次发布会,开沃集团常务副总裁、中央研究院院长董钊志博士,东风汽车股份有限公司商研总部党委书记、副总部长兼商品研发院院长强小文,金龙联合汽车工业(苏州)有限公司前瞻技术研究院副院长刘明春博士以及天准科技股份有限公司副总裁刘军传博士也出席现场,并对自动驾驶发展和行业应用发表了切身体会。
商用车领域有大量的细分场景,但是使用数量较乘用车相比有一定差距,如何在控制成本、保证安全的前提下,快速布局自动驾驶的全栈技术,仍然是行业参与者遇到的难题。
Apollo开放平台9.0拥有强大的场景通用能力,而且更加易用、易拓展。适配环节减少40% 、代码阅读量减少90%、代码调试量减少80%,可以实现“开箱即用”,一周内就能完成自动驾驶车辆闭环。同时,Apollo开放平台9.0覆盖场景愈加丰富,1个月即可完成场景应用业务系统闭环作业。在此基础上,传感器标定和地图创建周期都缩短至小时级,大幅缩短落地时长,效率更高。
同时,硬件成本更低,选型更丰富,硬件选型支持3Lidar+4Camera,相机支持超过4家厂商,从USB3.0升级为GMSL,激光雷达新增32线、64线等多品牌多型号设备,定位设备新增超过3家主流品牌设备支持,可全方位助力不同场景的规模应用落地。
金龙联合汽车工业(苏州)有限公司前瞻技术研究院副院长刘明春博士表示,Apollo开放平台让以苏州金龙为代表的传统大型主机厂商拥有面向未来产品智能化转型升级的信心和能力!传统制造车企,都想拥有自己的自动驾驶技术,但完整的系统搭建周期长、开发成本高、各类工具链不够完善,太过于依赖供应商。专业团队的组建更是困难,和自动驾驶公司不同,大型主机厂擅长制造,但是缺乏软件、算法等人才,这些原因使得主机厂迟迟无法真正 “独立自主”。
Apollo自动驾驶社区拥有各类开放学习资源,即使是刚毕业的新手也能快速了解自动驾驶完整架构,具有初步的研发能力,百度与苏州金龙技术团队在封闭园区低速自动驾驶的软件研发应用进行了长期深入密切的交流,对开发过程中遇到的各类难题,百度自动驾驶相关的同事进行了全面指导,助力苏州金龙团队自身研发能力的持续提升。Apollo的开放接口使得苏州金龙能够快速进行自动驾驶系统的二次开发,基于Apollo开放平台的通用能力,我们做了进一步迭代,让自动驾驶功能连接落地。面向未来的商业量产,Apollo开放平台在苏州金龙嵌入式域控适配研发中的关键技术问题提供了支持,直接解决了瓶颈,让我们的自动驾驶车辆量产落地有了关键的技术条件。高效、便捷、更加标准化的合作范式,是百度Apollo与苏州金龙一直在探索的,可持续地深入到量产合作,让苏州金龙有着智能化转型升级的信心和能力,刘明春博士如是说。
Apollo开放平台9.0的通用能力可以帮助传统制造车企等合作伙伴在智能化浪潮里,针对不同场景和应用,打造自己的自动驾驶系统,解决系统搭建难、开发成本高、硬件支持少、工具效率低等难题。通过构建人才培养、技术培训、商业牵引等全方位的合作新范式,让合作伙伴拥有面向未来产品智能化转型升级的信心和能力。
目前Apollo的合作伙伴包括苏州金龙、中云智车、智行者科技、主线科技、文远知行、酷哇机器人、Momenta、清研车联、清华大学、同济大学、上海交通大学等近220家公司和科研院校。
学习与实践相结合,做优自动驾驶行业人才生态
作为自动驾驶领域的先行者,百度Apollo十分重视自动驾驶领域的教育和人才培养。通过Apollo Studio开发者社区,构建了课程、实验、赛事一站式学习实践平台。目前,Apollo Studio开发者社区在线学习人次超过3.8万,累计覆盖全国开设自动驾驶相关专业类的理工院校超70%,985,211理工类院校覆盖率68%,成为国内自动驾驶在线培训规模最大和最有影响力的社区。
在中国人工智能学会主办的“中国机器人及人工智能大赛”中,百度Apollo的赛事受到了高校师生以及政府学会的广泛关注及认可,两届赛事共吸引来自300多所院校的1500多支队伍超5000人的参与,是目前全国自动驾驶类别的赛项中,报名规模最大的比赛。
中国机器人及人工智能大赛秘书长谭庆吉指出:“百度Apollo与中国人工智能学会的深入交流与合作,是共同推动科技人才培养进程的重要一步。通过这样的合作,我们期望培养出更多具有创新精神和实践能力的新时代科技人才,共同推动中国智能科技的发展。”
发布会上正式升级Apollo EDU高校计划,针对本科层次构建立体化校企合作人才培养解决方案,从教学、师资、创新、实训、合作支撑等方面展开合作。同时在职教层次围绕智能网联汽车岗位技能图谱,打造了技术技能人才培养方案。
南京工业职业技术大学交通工程学院党委副书记、院长王文凯表示:“2021年以来,学校与百度Apollo从培养课程建设、师资队伍建设、科创赛事、实习就业等方面共同探索一条职业本科教育特色发展道路,并且取得积极的成效。在未来,双方将继续深入推进智能网联汽车相关专业人才培养工作的落地,培育更多的智能网联汽车产业高层次技术技能人才。”
目前,Apollo开放平台汇聚了来自全球170多个国家和地区的16万多名开发者,在Apollo开放平台8.0至9.0开发过程中重构12万行代码,新增20万行代码。此次Apollo开放平台9.0的推出,使其在功能上更趋完整丰富,操作上更加灵活易上手,场景通用易扩展。未来Apollo开放平台将聚焦每一位开发者和生态伙伴的个性化需求,不断拓展能力边界、提升易用性,携手开发者与合作伙伴共创价值,跑出自动驾驶落地应用新速度。
Apollo开放平台生态合作请联系:apollox@baidu.com