编辑 | 自动驾驶Daily
点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
点击进入→自动驾驶之心技术交流群
本文只做学术分享,如有侵权,联系删文
4D毫米波雷达是相对于3D毫米波雷达的叫法,可以说2023年及之前,大部分量产方案都采用了3D毫米波雷达,今年听说某新势力已经开始将4D Radar量产到车上了,行业给出的时间点是2025年大批量量产,这家公司提前一年上车,上汽也公布了采用4D Radar的量产方案。
4D指的是在原有3D雷达的距离、方位、速度检测的基础上增加了高度信息,为啥需要高度呢?3D毫米波雷达由于自身限制,在很多场景中限制了其发挥。例如地面上的井盖、人行天桥这些在雷达眼里都是一个水平面上的东西,它也不知道到底能不能通过!经典的如带AEB功能的车每次碰到减速带都要刹一下,其实就是毫米波雷达在搞鬼,因为它不确定这个东西有多高,万一是个障碍物,撞上去咋办。
4D毫米波雷达的另外一个叫法为4D成像毫米波雷达(其实业内基本将这两个称呼等同了),为啥叫成像呢?参考相机成像,传统3D雷达点云非常稀疏,你甚至无法看出一辆车的形态。而4D毫米波雷达,可以对一个cyclist甚至行人建模,就像图像中的特征一样,点云密集了很多。
目前市场上,4D毫米波雷达的玩家有大陆、采埃孚、安波福、Waymo、Mobileye、Arbe、傲酷、森思泰克、纳瓦电子、几何伙伴这些公司入局。据说特斯拉的方案将采用4D Radar,解决视觉传感器无法完全handle的case。
先说说4D Radar的优势吧!
价格便宜,只有激光雷达成本的十分之一,如果说Lidar是30w以上车型的专属,那么4D Radar能够更好服务中低端车型。所以很多车企,在竞争压力越来越大的情况下,不得不降低定价,慢慢转向更有性价比的4D Radar。
结合了激光雷达和3D毫米波雷达,可以做到点云和方位、速度信息共用,一个雷达多个用处;
角分辨率更高,相比于3D雷达,可以提高5-10倍,对小目标感知友好;
4D Radar目前的问题
点云仍然不够稠密,勉强对齐8-16线激光雷达,和稠密线束的激光雷达还差距很大;
进一步的提升点云密度,在成本和技术上都面临较大挑战;
激光雷达的价格也在不断下降,4D毫米波雷达如果无法真正突破壁垒,也会面临窘境。
目前很多公司都在试用阶段,还是无法真正替换掉激光雷达,但4D毫米波雷达的市场还是很有前景的,希望能够早日上位,发挥最大价值。
投稿作者为『自动驾驶之心知识星球』特邀嘉宾,欢迎加入交流!
① 全网独家视频课程
BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、大模型与自动驾驶、Nerf、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)

② 国内首个自动驾驶学习社区
近2400人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】平台矩阵,欢迎联系我们!