PNC,今年的香饽饽!近10种规控算法与代码实现你都知道吗?

自动驾驶一般分为感知、预测、规划和控制四大基础模块,各个模块各司其职、分工明确,今天汽车人就和大家聊聊规划控制。一般来说规划控制的目的有两个:

  • 一是对车辆运动进行全局规划(从地点A到地点B运行路线)、行为决策(判断变道还是超车等)、局部规划(规划局部行驶轨迹,规避障碍物等);

  • 二是精准控制车辆按规划轨迹行驶。

图片

规划控制作为整个自动驾驶/机器人算法流程中最下游的模块,直接决定着自动驾驶的安全性及舒适度。一个好的规控直接影响司机和乘客的乘车体验:转弯是否顺畅、跟车时前车刹车本车如何处理、复杂路口汇车时能否及时汇入规划车道等等。

这些复杂控制的背后正是规控模块发挥着作用,很多刚入门的小伙伴一头雾水,规控到底是个啥?都有哪些子领域?每个领域又都包含哪些算法?这些算法如何实现?都有哪些优缺点?适用哪些场景?整体来说,车辆从路径规划开始,行进过程中根据感知和定位的信息做出相应决策(跟车、变道、加速等等)。接着根据上游决策的结果,运动规划模块实时输出对应的轨迹信息以及速度、加速度和方向盘转角信息,进而由控制模块执行相应控制。

图片

而且随着国家大力支持新能源汽车行业的发展,各大企业也加大相关岗位人才招聘,刚看了某招聘网站,相关岗位平均月薪已达到4w以上,年薪60w。高级岗位年薪百万的也比比皆是!

图片

学习难度大

整体来说,规划控制相比于感知对理论知识的要求较高。目前企业界的主流规控算法包括PID, LQR, MPC等控制算法,以及A*,Hybrid A*,Lattice Planner,EM Planner等等规划算法。这段时间,有很多小伙伴咨询规划控制的相关问题,其实我们对规划控制也很感兴趣,市面上已有的规划控制相关学习资料质量参差不齐,许多同学在资料搜集和入门学习的时候踩了较多坑:

规划控制算法类别很多,网上找不到系统学习的资料,刚入门的同学不知道从何下手,论文也看的一知半解...

不理解各类规划控制算法的优缺点是什么,不知道在不同的场景下要选择哪类算法

不知道业界现在缺少什么技术栈的人才,自学过程中容易把握不好方向

图片

在分析大家在学习过程中的痛点之后,自动驾驶之心联合业内某大厂规控工程师共同打磨了《规划控制理论与实战课程》线上课程。如果你正想要入门规划控制,深入理解算法原理,或者需要提升这方面的技术能力,不知如何优化,同时又缺少项目实战经验,那么一定要学习下这门课,课程内容详细介绍了规划算法基础知识、横纵解耦/联合的决策规划框架及常用的控制算法(PID、LQR、MPC等等)

课程从最基础的规划控制模块概要、定义开始,进而到规划算法基础知识的讲解,涉及基于搜索/采样/车辆运动学/数值优化的相关规划算法,再到决策规划框架的讲解(横纵解耦、横纵联合)、最后讲解了常用的几种控制算法(PID、LQR、MPC)并探讨了PnC面临的挑战,实战涉及Dijkstra、A*、RRT*、State Lattice Planner、QP路径优化和基于MPC的轨迹跟踪算法

大家先看一下本期课程的大纲,满满的干货,真正做到帮助0基础的同学高效学习,快速掌握每一个知识点

图片

项目实战和理论结合,实战课程的课后配套实战代码,随学随练、快速掌握。

共5大实战项目

课程包括完善的【老师教学】+【助教答疑】服务,确保每一位小伙伴都能愉快的学习知识。

  • 实战一:实现A*、Dijkstra,校招面试必备;

  • 实战二:实现RRT*算法;

  • 实战三:实现State Lattice Planner;

  • 实战四:实现基于QP的路径优化算法;

  • 实战五:实现基于MPC的轨迹跟踪算法!

课件代码一应俱全

细致的讲解,不光有理论,代码及实践也一定要讲透彻!

通过全套的视频讲解,帮你在脑海中搭建模型的基本框架,让你彻底搞懂每一个知识点,从而提高你写代码的速度。

图片

图片

图片

讲师介绍

宁远,自动驾驶之心前沿技术研究团队成员,深耕自动驾驶算法领域多年,现任业内头部自动驾驶公司团队资深算法工程师,在自动驾驶规划控制算法研究和工程落地方面有着丰富的经验。

课程收获

  1. 对规划算法理论基础知识有深入的理解,在代码实现上有较大提升;

  2. 对决策规划框架有深入的理解,掌握常见的横纵解耦和横纵联合规划框架;

  3. 掌握常用的控制算法(PID、LQR、MPC);

  4. 学完本课程能够达到1年左右的自动驾驶规控工程师水平;

  5. 能够结识许多行业从业人员与学习合作伙伴!

适合人群

  1. 车辆工程、自动化、汽车电子、计算机科学、软件工程、运动控制等相关专业研究方向的本科/硕士/博士;

  2. 自动驾驶规划与控制相关算法工程人员;

  3. 想要转入自动驾驶规控算法的小伙伴;

本课程需要具备的基础

  1. 具有一定的编程基础:C/C++或者Python;

  2. 一定的高等数学、线性代数和矩阵论基础;

开课时间与学习方式

2023年7月18日正式开始学习之路,历经两个月,离线视频授课。主讲老师在微信学习群内答疑,对课程中的算法、代码、环境配置等问题一一解惑!

课程咨询

扫码一起学习课程!

图片

扫码添加助理咨询课程!

(微信:AIDriver004)

图片

程序介绍: PNC浏览器是一个智能PNC工具软件,可以实现自动采集、自动发布、自动SEO、自动推广等等。 PNC浏览器由来: 我们在制作网站、编辑内容的时候,发现市面上的采集发布等PNC站长工具软件难以满足需求,于是开始打造一款实用性强的www.xdpj.net站长工具软件--“PNC浏览器”。 PNC浏览器功能及特色: 1.浏览器:绿色、小巧、便携的浏览器,不管是站长还是普通用户,都可以使用; 2.采集器:强大的数据抓取能力,“所见即所得”,只要在PNC浏览器中能看到的文字、图片、附件,都可以www.askschool.net抓取下来; *内置则、智能则、服务器则,在一定程度上实现了普通用户上手无需编写则即可轻松使用,当然用户也可以自编采集则,来实现个性化的采集需求; 3.发布器:自带丰富的发布接口,无需在服务器端安装数据库接口,普通用户几分钟即可上手,添加发布网站、采集发布内容。兼容www.ie18.info主流论坛、cms、blog源程序以及免费blog,实现自动发帖、发文章、顶贴、灌水、抢沙发等网站相关的发布操作,也可以利用强大的自编发布实现任意网站自动发布; 国内领先的模拟发布技术,只要在PNC浏览器内手工可以正常发布,那么用PNC浏览器也可以实现自动化发布。 4.PNC伪原创:自动伪原创,在采集--发布过程中即可对内容进行伪原创; 5.PNC站群:数字化权重,灵活的组合方式,轻松实现内链、外链、链轮、混链; 6.则:强大的则体系“采集则、发布则、以及独有的webpig语言(p语言)”,用户可以编写自己的则,实现个性化的采集发布需求。 更多功能可以参考官网:www.dreiffel.org
### 回答1: 自驾算法leader jd涉及自动驾驶的领导职位职责。自动驾驶技术在汽车行业发展迅速,自驾算法leader jd负责领导开发和优化自动驾驶系统中的算法。 首先,自驾算法leader jd负责团队管理和领导。他们需要招聘、培养和管理算法团队,并设定清晰的目标和战略,确保团队按时交付高质量的工作成果。 其次,自驾算法leader jd需要其他团队进行紧密合作。他们感知算法、决策算法以及高精地图等团队合作,确保自动驾驶系统的整体性能和安全性。 自驾算法leader jd还需要负责领导算法的开发和优化工作。他们需要深入了解自动驾驶系统的算法原理和技术,并团队成员进行技术讨论和指导,确保算法的准确性和稳定性。 此外,自驾算法leader jd需要产品经理和项目经理合作,开展产品规划和项目管理工作。他们需要根据市场需求和技术趋势,制定技术路线和规划,确保自动驾驶系统的竞争力和创新性。 最后,作为自驾算法leader jd,还需要关注行业动态和技术前沿。他们需要不断学习和研究最新的自动驾驶技术,保持团队的技术领先性,并提出技术创新的建议和方案。 综上所述,自驾算法leader jd是负责领导和管理自动驾驶系统中算法的职位。他们需要具备丰富的技术知识和领导能力,其他团队紧密合作,确保自动驾驶系统的性能、安全性和创新性。 ### 回答2: 自驾算法leader,即自动驾驶系统中的核心算法团队负责人。这个职位的主要职责是领导和管理自驾算法团队,负责开发和优化自动驾驶系统中的算法,确保车辆能够安全、高效地行驶。 首先,自驾算法leader需要具备扎实的算法和数据分析能力。他们要不断研究和探索最新的自动驾驶技术和算法,确保公司在行业中的领先地位。他们需要对机器学习、计算机视觉等相关领域有深入的了解,并能熟练运用相关工具和技术。 其次,自驾算法leader需要具备良好的团队管理和协调能力。他们负责招聘和培养团队成员,激发团队的创新潜能,并其他部门进行紧密合作,共同解决技术难题和推动项目的进展。他们需要能够有效地分配资源和任务,确保团队能够高效地工作。 此外,自驾算法leader还需要具备良好的沟通和领导能力。他们需要公司高层和合作伙伴进行经常性的沟通和协调,及时反馈和解决问题。同时,他们还要向团队成员传递技术指导和工作安排,帮助团队成员提升技术能力和解决实际问题。 最后,自驾算法leader需要保持对行业发展的持续关注和学习。他们要时刻关注自动驾驶技术的新动态,了解竞争对手的最新进展,并不断优化和改进自己的算法和系统,以提高车辆的性能和安全性。 总之,自驾算法leader是一个重要的职位,他们的工作涉及多个方面,包括算法研发、团队管理、沟通协调等。他们需要具备扎实的技术能力和领导能力,能够推动公司自动驾驶系统的发展和进步。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值