PNC,今年的香饽饽!近10种规控算法与代码实现你都知道吗?

自动驾驶一般分为感知、预测、规划和控制四大基础模块,各个模块各司其职、分工明确,今天汽车人就和大家聊聊规划控制。一般来说规划控制的目的有两个:

  • 一是对车辆运动进行全局规划(从地点A到地点B运行路线)、行为决策(判断变道还是超车等)、局部规划(规划局部行驶轨迹,规避障碍物等);

  • 二是精准控制车辆按规划轨迹行驶。

图片

规划控制作为整个自动驾驶/机器人算法流程中最下游的模块,直接决定着自动驾驶的安全性及舒适度。一个好的规控直接影响司机和乘客的乘车体验:转弯是否顺畅、跟车时前车刹车本车如何处理、复杂路口汇车时能否及时汇入规划车道等等。

这些复杂控制的背后正是规控模块发挥着作用,很多刚入门的小伙伴一头雾水,规控到底是个啥?都有哪些子领域?每个领域又都包含哪些算法?这些算法如何实现?都有哪些优缺点?适用哪些场景?整体来说,车辆从路径规划开始,行进过程中根据感知和定位的信息做出相应决策(跟车、变道、加速等等)。接着根据上游决策的结果,运动规划模块实时输出对应的轨迹信息以及速度、加速度和方向盘转角信息,进而由控制模块执行相应控制。

图片

而且随着国家大力支持新能源汽车行业的发展,各大企业也加大相关岗位人才招聘,刚看了某招聘网站,相关岗位平均月薪已达到4w以上,年薪60w。高级岗位年薪百万的也比比皆是!

图片

学习难度大

整体来说,规划控制相比于感知对理论知识的要求较高。目前企业界的主流规控算法包括PID, LQR, MPC等控制算法,以及A*,Hybrid A*,Lattice Planner,EM Planner等等规划算法。这段时间,有很多小伙伴咨询规划控制的相关问题,其实我们对规划控制也很感兴趣,市面上已有的规划控制相关学习资料质量参差不齐,许多同学在资料搜集和入门学习的时候踩了较多坑:

规划控制算法类别很多,网上找不到系统学习的资料,刚入门的同学不知道从何下手,论文也看的一知半解...

不理解各类规划控制算法的优缺点是什么,不知道在不同的场景下要选择哪类算法

不知道业界现在缺少什么技术栈的人才,自学过程中容易把握不好方向

图片

在分析大家在学习过程中的痛点之后,自动驾驶之心联合业内某大厂规控工程师共同打磨了《规划控制理论与实战课程》线上课程。如果你正想要入门规划控制,深入理解算法原理,或者需要提升这方面的技术能力,不知如何优化,同时又缺少项目实战经验,那么一定要学习下这门课,课程内容详细介绍了规划算法基础知识、横纵解耦/联合的决策规划框架及常用的控制算法(PID、LQR、MPC等等)

课程从最基础的规划控制模块概要、定义开始,进而到规划算法基础知识的讲解,涉及基于搜索/采样/车辆运动学/数值优化的相关规划算法,再到决策规划框架的讲解(横纵解耦、横纵联合)、最后讲解了常用的几种控制算法(PID、LQR、MPC)并探讨了PnC面临的挑战,实战涉及Dijkstra、A*、RRT*、State Lattice Planner、QP路径优化和基于MPC的轨迹跟踪算法

大家先看一下本期课程的大纲,满满的干货,真正做到帮助0基础的同学高效学习,快速掌握每一个知识点

图片

项目实战和理论结合,实战课程的课后配套实战代码,随学随练、快速掌握。

共5大实战项目

课程包括完善的【老师教学】+【助教答疑】服务,确保每一位小伙伴都能愉快的学习知识。

  • 实战一:实现A*、Dijkstra,校招面试必备;

  • 实战二:实现RRT*算法;

  • 实战三:实现State Lattice Planner;

  • 实战四:实现基于QP的路径优化算法;

  • 实战五:实现基于MPC的轨迹跟踪算法!

课件代码一应俱全

细致的讲解,不光有理论,代码及实践也一定要讲透彻!

通过全套的视频讲解,帮你在脑海中搭建模型的基本框架,让你彻底搞懂每一个知识点,从而提高你写代码的速度。

图片

图片

图片

讲师介绍

宁远,自动驾驶之心前沿技术研究团队成员,深耕自动驾驶算法领域多年,现任业内头部自动驾驶公司团队资深算法工程师,在自动驾驶规划控制算法研究和工程落地方面有着丰富的经验。

课程收获

  1. 对规划算法理论基础知识有深入的理解,在代码实现上有较大提升;

  2. 对决策规划框架有深入的理解,掌握常见的横纵解耦和横纵联合规划框架;

  3. 掌握常用的控制算法(PID、LQR、MPC);

  4. 学完本课程能够达到1年左右的自动驾驶规控工程师水平;

  5. 能够结识许多行业从业人员与学习合作伙伴!

适合人群

  1. 车辆工程、自动化、汽车电子、计算机科学、软件工程、运动控制等相关专业研究方向的本科/硕士/博士;

  2. 自动驾驶规划与控制相关算法工程人员;

  3. 想要转入自动驾驶规控算法的小伙伴;

本课程需要具备的基础

  1. 具有一定的编程基础:C/C++或者Python;

  2. 一定的高等数学、线性代数和矩阵论基础;

开课时间与学习方式

2023年7月18日正式开始学习之路,历经两个月,离线视频授课。主讲老师在微信学习群内答疑,对课程中的算法、代码、环境配置等问题一一解惑!

课程咨询

扫码一起学习课程!

图片

扫码添加助理咨询课程!

(微信:AIDriver004)

图片

### 回答1: `nn.GroupNorm` 是 PyTorch 中的一个归一化操作,它与 `nn.BatchNorm` 不同,可以用于小批量数据上的归一化。 `nn.GroupNorm` 在通道维度上将特征图分成若干组,每组内进行归一化操作。相比于 `nn.BatchNorm`,`nn.GroupNorm` 的优点在于: 1. 可以适用于较小的批量,因为每个组的大小可以自由设置,而不必像 `nn.BatchNorm` 那样限制在整个特征图上进行统计。 2. 不受 batch size 大小的影响,因为每个样本都会被分配到某个组内,而不是整个 batch 上进行统计。 3. 更适合进行分布式训练,因为在分布式训练中对于一个 batch 的数据,可能每个进程只拥有其中的一部分,这时候 `nn.BatchNorm` 的统计会不准确,而 `nn.GroupNorm` 的统计相对更加准确。 `nn.GroupNorm` 的使用方法与 `nn.BatchNorm` 类似,可以参考 PyTorch 官方文档进行使用。 ### 回答2: nn.GroupNorm是一种用于处理深度学习中批归一化的一种技术。批归一化在深度学习中是常用的一种方法,它能够加速收敛、提高模型的鲁棒性,并且能够防止模型出现过拟合的情况。 而nn.GroupNorm是一种改进的批归一化方法,它的主要特点是将输入数据在通道维度上划分为多个组。与传统的批归一化方法不同的是,nn.GroupNorm并不是将所有通道数据一起进行归一化,而是将每个组内的数据进行归一化,这样能够更好地保留通道间的独立性。 具体来说,nn.GroupNorm在计算均值和方差时,是在通道维度上计算的,而不是在每个样本上计算。这样做的好处是无论通道数多少,都能够得到相同的归一化结果,从而更好地保证了模型在不同任务和不同网络层上的适应性。 与此同时,nn.GroupNorm的另一个优点是可以减少对批大小的依赖。传统的批归一化需要较大的批大小才能保证较好的结果,而nn.GroupNorm可以在批大小较小的情况下也能够得到较好的效果。这对于一些计算资源较为有限的环境是非常有帮助的。 总结起来,nn.GroupNorm是一种改进的批归一化方法,通过在通道维度上将输入数据划分为多个组,能够更好地保留通道间的独立性,同时减少对批大小的依赖,提高了深度学习模型的性能和鲁棒性。 ### 回答3: nn.GroupNormPyTorch深度学习框架中的一个特殊的归一化层。与传统的Batch Normalization(BN)和Instance Normalization(IN)不同,Group Normalization(GN)是一种更加灵活的归一化方法。它的主要思想是将特征通道划分为若干组,每一组中的特征通道共享一个均值和方差,这样可以有效地减少对于批量大小的依赖性,提供更好的模型泛化性能。 与BN和IN相比,GN有以下几个优点: 1. 对于小批量大小,GN相比于BN能够保持较好的性能。在某些场景下,由于计算资源的限制,批量大小很小是不可避免的,这时BN表现会比较差,而GN可以通过将特征通道划分为更小的组,来进行归一化,从而提供更好的性能。 2. GN对于样本间的差异更加鲁棒。由于BN依赖于每个批次的均值和方差,当批次中的样本之间差异较大时,BN可能会带来不稳定性。而GN通过组内的均值和方差,减少了对于样本间差异的影响。 3. GN更适用于小尺寸图像。当图像尺寸较小时,BN很难有效地计算每个特征图上的均值和方差,而GN可以通过将特征通道划分为更小的组,在每个小组上计算均值和方差,从而提供更好的性能。 总而言之,nn.GroupNorm作为一种替代Batch Normalization和Instance Normalization的归一化方法,能够在小批量大小、样本间差异较大、小尺寸图像等场景下提供更好的性能,是一种更加灵活和鲁棒的归一化方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值