编辑 | 自动驾驶专栏
点击下方卡片,关注“自动驾驶之心”公众号
>>点击进入→自动驾驶之心『BEV感知』技术交流群
论文链接:https://arxiv.org/pdf/2502.10498
摘要

本文介绍了世界模型在塑造自动驾驶中的作用:综述。驾驶世界模型(DWM)着重于预测驾驶过程中的场景演变,它已经成为自动驾驶中有前景的范式。这些方法使得自动驾驶系统能够更好地感知、理解动态驾驶环境并且与之交互。本综述全面概述了DWM中的最新进展。本文根据预测场景的模态对现有方法进行分类,并且总结了其对自动驾驶的特定贡献。此外,本文还对DWM研究范围内针对不同任务设计的高影响力数据集和各种指标进行了回顾。最后,本文讨论了当前研究的潜在局限性,并且提出了未来的研究方向。本综述为DWM的发展和应用提供了有价值的见解,促进了其在自动驾驶中的广泛应用。
主要贡献

本文的贡献总结如下:
1)本文全面回顾了DWM中的最新进展,通过预测的场景模态对现有方法进行分类,并且概述了DWM在自动驾驶中的应用;
2)本文对当前局限性进行关键性分析,并且概述了有前景的未来研究方向,这不仅为研究界提供了有价值的见解,还有助于DWM的持续发展。
论文图片和表格

总结

驾驶世界模型(DWM)逐渐被认为是自动驾驶系统架构中的一个组成部分,旨在通过未来演变预测来改进决策。本文研究了DWM的具体贡献,不仅系统性概述了通过预测的场景模态进行分类的现有方法,还总结了DWM应用及其对自动驾驶的影响,随后回顾了常用的数据集和指标。此外,本文进一步深入研究了当前的局限性,并且指出了一些有前景的未来研究方向,以克服这些挑战并且推进未来的领域探索。本文认为,本综述将为早期研究者提供DWM领域中关键进展的快速概览。
① 自动驾驶论文辅导来啦
② 国内首个自动驾驶学习社区
『自动驾驶之心知识星球』近4000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(端到端自动驾驶、世界模型、仿真闭环、2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型,更有行业动态和岗位发布!欢迎扫描加入

③全网独家视频课程
端到端自动驾驶、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、CUDA与TensorRT模型部署、大模型与自动驾驶、NeRF、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)
④【自动驾驶之心】全平台矩阵