>>直播和内容获取转到→自动驾驶之心知识星球
深度学习的快速发展加剧了对自动驾驶算法使用的全面数据的需求。高质量的数据集对于开发有效的数据驱动自动驾驶解决方案至关重要。下一代自动驾驶数据集必须是多模态的,整合来自高级传感器的数据,这些传感器具有广泛的数据覆盖范围、详细的标注和多样化的场景表示。为了满足这一需求,同济大学、浙江大学、新加坡2077 AI基金会和整数智能等团队联合提出了OmniHD-Scenes,这是一个大规模的多模态数据集,提供全面的环视高清数据。OmniHD-Scenes数据集结合了来自128束激光雷达、6v和六个4D成像雷达系统的数据,以实现全面的环境感知。该数据集包括1501个片段,每个片段长约30秒,总计超过450K个同步帧和超过585万个同步传感器数据点。我们还提出了一种新颖的4D标注管道。到目前为止,我们已经用超过514K个精确的3D box标注了200个clip。这些剪辑还包括静态场景元素的语义分割标注。此外,我们引入了一种新的自动管道,用于生成密集OCC GT,该管道有效地利用了非关键帧中的信息。除了所提出的数据集,我们还建立了全面的评估指标、基线模型和3D检测和语义占用预测的基准。这些基准测试利用全景相机和4D成像雷达为自动驾驶应用探索经济高效的传感器解决方案。大量实验证明了我们的低成本传感器配置的有效性及其在不利条件下的鲁棒性。

论文链接:https://arxiv.org/pdf/2412.10734
开源数据:https://www.2077ai.com/OmniHD-Scenes

为此自动驾驶之心邀请到同济大学在读博士郑联庆和整数智能算法负责人刘明皓为大家分享这篇工作,下一代多模态自动驾驶数据集到底如何构建?锁定自动驾驶之心直播间,今晚七点半不见不散~
国内首个自动驾驶学习社区
『自动驾驶之心知识星球』近4000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(端到端自动驾驶、世界模型、仿真闭环、2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型,更有行业动态和岗位发布!欢迎扫描加入

【自动驾驶之心】技术交流群
自动驾驶之心是国内领先的技术交流平台,关注自动驾驶前沿技术与行业、职场成长等。我们成立了一系列的技术交流群,涉及:语义分割、车道线检测、2D/3D目标跟踪、2D/3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、在线地图、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、Gaussian Splatting、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等多个方向!
备注:学校/公司+方向+昵称(快速入群方式)
点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取