滴滴高频笔试编程题:将有序数组转换为二叉搜索树(简单)


题目描述

给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 平衡 二叉搜索树。

示例 1:

输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:


示例 2:

输入:nums = [1,3]
输出:[3,1]
解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。
提示:

1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums 按 严格递增 顺序排列

解题思路

要将一个升序排列的整数数组转换为一棵平衡二叉搜索树(BST),我们可以利用递归方法构建树。这是因为一个平衡的BST的中序遍历应该是升序排列的,因此我们可以通过递归的方式选择中间的元素作为根节点,递归构建左右子树,从而保持平衡。

递归构建树:

选择数组的中间元素作为根节点;递归地构建左子树,左子树的节点来源于数组的左半部分;递归地构建右子树,右子树的节点来源于数组的右半部分。
树的平衡性:由于数组已经是升序排列的,选择中间元素作为根节点可以保证树的高度平衡。

复杂度分析

时间复杂度:O(n),其中 n 是数组的长度。每个节点只被创建一次,且数组每次被划分为两个部分,时间复杂度为 O(n)。
空间复杂度:O(log n),主要是递归栈的空间复杂度。在最坏情况下,递归栈的深度为树的高度,树的高度为 O(log n)。

代码实现

package org.zyf.javabasic.letcode.hot100.tree;
 
import org.zyf.javabasic.letcode.tree.base.TreeNode;
 
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
 
/**
 * @program: zyfboot-javabasic
 * @description: 将有序数组转换为二叉搜索树(简单)
 * @author: zhangyanfeng
 * @create: 2024-08-22 11:34
 **/
public class SortedArrayToBSTSolution {
    public TreeNode sortedArrayToBST(int[] nums) {
        return sortedArrayToBSTHelper(nums, 0, nums.length - 1);
    }
 
    private TreeNode sortedArrayToBSTHelper(int[] nums, int left, int right) {
        if (left > right) {
            return null;
        }
 
        int mid = left + (right - left) / 2;
        TreeNode root = new TreeNode(nums[mid]);
        root.left = sortedArrayToBSTHelper(nums, left, mid - 1);
        root.right = sortedArrayToBSTHelper(nums, mid + 1, right);
 
        return root;
    }
 
    public static void main(String[] args) {
        SortedArrayToBSTSolution solution = new SortedArrayToBSTSolution();
 
        // Example 1
        int[] nums1 = {-10, -3, 0, 5, 9};
        TreeNode root1 = solution.sortedArrayToBST(nums1);
        printTree(root1);  // Output should be a balanced BST
 
        // Example 2
        int[] nums2 = {1, 3};
        TreeNode root2 = solution.sortedArrayToBST(nums2);
        printTree(root2);  // Output should be a balanced BST
    }
 
    private static void printTree(TreeNode root) {
        if (root == null) {
            System.out.println("null");
            return;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.add(root);
        while (!queue.isEmpty()) {
            TreeNode node = queue.poll();
            if (node != null) {
                System.out.print(node.val + " ");
                queue.add(node.left);
                queue.add(node.right);
            } else {
                System.out.print("null ");
            }
        }
        System.out.println();
    }
}

43.验证二叉搜索树(中等)
题目描述

给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

有效 二叉搜索树定义如下:

节点的左子树只包含 小于 当前节点的数。
节点的右子树只包含 大于 当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
示例 1:

输入:root = [2,1,3]
输出:true
示例 2:

输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。
提示:

树中节点数目范围在[1, 104] 内
-231 <= Node.val <= 231 - 1
解题思路

要判断一个二叉树是否是一个有效的二叉搜索树(BST),可以利用 BST 的性质进行递归检查:

定义:

左子树的所有节点的值都必须小于当前节点的值;右子树的所有节点的值都必须大于当前节点的值;每个子树也必须是 BST。
递归方法:

在递归中,维护一个有效的值范围(min 和 max),用于确保每个节点的值都在正确的范围内;对于每个节点,检查其值是否在给定的范围内,然后递归检查其左子树和右子树,更新有效值范围。
复杂度分析

时间复杂度:O(n),其中 n 是树的节点数。每个节点会被访问一次。
空间复杂度:O(h),其中 h 是树的高度。递归栈的空间复杂度为树的高度。
代码实现

package org.zyf.javabasic.letcode.hot100.tree;
 
import org.zyf.javabasic.letcode.tree.base.TreeNode;
 
/**
 * @program: zyfboot-javabasic
 * @description: 验证二叉搜索树(中等)
 * @author: zhangyanfeng
 * @create: 2024-08-22 11:42
 **/
public class IsValidBSTSolution {
    public boolean isValidBST(TreeNode root) {
        return isValidBSTHelper(root, Long.MIN_VALUE, Long.MAX_VALUE);
    }
 
    private boolean isValidBSTHelper(TreeNode node, long min, long max) {
        if (node == null) {
            return true;
        }
 
        // Check current node value
        if (node.val <= min || node.val >= max) {
            return false;
        }
 
        // Recursively check left and right subtrees
        return isValidBSTHelper(node.left, min, node.val) &&
                isValidBSTHelper(node.right, node.val, max);
    }
 
    public static void main(String[] args) {
        IsValidBSTSolution solution = new IsValidBSTSolution();
 
        // Example 1
        TreeNode root1 = new TreeNode(2);
        root1.left = new TreeNode(1);
        root1.right = new TreeNode(3);
        System.out.println(solution.isValidBST(root1));  // Output: true
 
        // Example 2
        TreeNode root2 = new TreeNode(5);
        root2.left = new TreeNode(1);
        root2.right = new TreeNode(4);
        root2.right.left = new TreeNode(3);
        root2.right.right = new TreeNode(6);
        System.out.println(solution.isValidBST(root2));  // Output: false
    }
}

————————————————

                            版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
                        
原文链接:https://blog.csdn.net/xiaofeng10330111/article/details/141401712

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值