题目描述
给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 平衡 二叉搜索树。
示例 1:
输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:
示例 2:
输入:nums = [1,3]
输出:[3,1]
解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。
提示:
1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums 按 严格递增 顺序排列
解题思路
要将一个升序排列的整数数组转换为一棵平衡二叉搜索树(BST),我们可以利用递归方法构建树。这是因为一个平衡的BST的中序遍历应该是升序排列的,因此我们可以通过递归的方式选择中间的元素作为根节点,递归构建左右子树,从而保持平衡。
递归构建树:
选择数组的中间元素作为根节点;递归地构建左子树,左子树的节点来源于数组的左半部分;递归地构建右子树,右子树的节点来源于数组的右半部分。
树的平衡性:由于数组已经是升序排列的,选择中间元素作为根节点可以保证树的高度平衡。
复杂度分析
时间复杂度:O(n),其中 n 是数组的长度。每个节点只被创建一次,且数组每次被划分为两个部分,时间复杂度为 O(n)。
空间复杂度:O(log n),主要是递归栈的空间复杂度。在最坏情况下,递归栈的深度为树的高度,树的高度为 O(log n)。
代码实现
package org.zyf.javabasic.letcode.hot100.tree;
import org.zyf.javabasic.letcode.tree.base.TreeNode;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
/**
* @program: zyfboot-javabasic
* @description: 将有序数组转换为二叉搜索树(简单)
* @author: zhangyanfeng
* @create: 2024-08-22 11:34
**/
public class SortedArrayToBSTSolution {
public TreeNode sortedArrayToBST(int[] nums) {
return sortedArrayToBSTHelper(nums, 0, nums.length - 1);
}
private TreeNode sortedArrayToBSTHelper(int[] nums, int left, int right) {
if (left > right) {
return null;
}
int mid = left + (right - left) / 2;
TreeNode root = new TreeNode(nums[mid]);
root.left = sortedArrayToBSTHelper(nums, left, mid - 1);
root.right = sortedArrayToBSTHelper(nums, mid + 1, right);
return root;
}
public static void main(String[] args) {
SortedArrayToBSTSolution solution = new SortedArrayToBSTSolution();
// Example 1
int[] nums1 = {-10, -3, 0, 5, 9};
TreeNode root1 = solution.sortedArrayToBST(nums1);
printTree(root1); // Output should be a balanced BST
// Example 2
int[] nums2 = {1, 3};
TreeNode root2 = solution.sortedArrayToBST(nums2);
printTree(root2); // Output should be a balanced BST
}
private static void printTree(TreeNode root) {
if (root == null) {
System.out.println("null");
return;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
while (!queue.isEmpty()) {
TreeNode node = queue.poll();
if (node != null) {
System.out.print(node.val + " ");
queue.add(node.left);
queue.add(node.right);
} else {
System.out.print("null ");
}
}
System.out.println();
}
}
43.验证二叉搜索树(中等)
题目描述
给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
节点的左子树只包含 小于 当前节点的数。
节点的右子树只包含 大于 当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入:root = [2,1,3]
输出:true
示例 2:
输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。
提示:
树中节点数目范围在[1, 104] 内
-231 <= Node.val <= 231 - 1
解题思路
要判断一个二叉树是否是一个有效的二叉搜索树(BST),可以利用 BST 的性质进行递归检查:
定义:
左子树的所有节点的值都必须小于当前节点的值;右子树的所有节点的值都必须大于当前节点的值;每个子树也必须是 BST。
递归方法:
在递归中,维护一个有效的值范围(min 和 max),用于确保每个节点的值都在正确的范围内;对于每个节点,检查其值是否在给定的范围内,然后递归检查其左子树和右子树,更新有效值范围。
复杂度分析
时间复杂度:O(n),其中 n 是树的节点数。每个节点会被访问一次。
空间复杂度:O(h),其中 h 是树的高度。递归栈的空间复杂度为树的高度。
代码实现
package org.zyf.javabasic.letcode.hot100.tree;
import org.zyf.javabasic.letcode.tree.base.TreeNode;
/**
* @program: zyfboot-javabasic
* @description: 验证二叉搜索树(中等)
* @author: zhangyanfeng
* @create: 2024-08-22 11:42
**/
public class IsValidBSTSolution {
public boolean isValidBST(TreeNode root) {
return isValidBSTHelper(root, Long.MIN_VALUE, Long.MAX_VALUE);
}
private boolean isValidBSTHelper(TreeNode node, long min, long max) {
if (node == null) {
return true;
}
// Check current node value
if (node.val <= min || node.val >= max) {
return false;
}
// Recursively check left and right subtrees
return isValidBSTHelper(node.left, min, node.val) &&
isValidBSTHelper(node.right, node.val, max);
}
public static void main(String[] args) {
IsValidBSTSolution solution = new IsValidBSTSolution();
// Example 1
TreeNode root1 = new TreeNode(2);
root1.left = new TreeNode(1);
root1.right = new TreeNode(3);
System.out.println(solution.isValidBST(root1)); // Output: true
// Example 2
TreeNode root2 = new TreeNode(5);
root2.left = new TreeNode(1);
root2.right = new TreeNode(4);
root2.right.left = new TreeNode(3);
root2.right.right = new TreeNode(6);
System.out.println(solution.isValidBST(root2)); // Output: false
}
}
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/xiaofeng10330111/article/details/141401712