【DP】求最长不下降序列

该博客介绍了一个寻找最长不下降序列的问题,输入包含不超过1000个不相同的整数,目标是找到最长的不下降序列的长度。通过动态规划(DP)策略解决,博主提出状态转移方程f[i]=max(f[i],f[j]+1),并提供了程序实现。" 118497153,10264332,Java多线程:wait/notify与线程安全解析,"['java', '多线程', '线程安全', '同步机制']
摘要由CSDN通过智能技术生成

求 最 长 不 下 降 序 列 求最长不下降序列


题目

设有 n ( n < = 1000 ) n(n<=1000) n(n<=1000)个不相同的整数(小于 32767 32767 32767)组成的数列,记为:a1,a2,…,an,其中任意两个数不相同。
 例如: 3 , 18 , 7 , 14 , 10 , 12 , 23 , 41 , 16 , 24 3,18,7,14,10,12,23,41,16,24 3,18,7,14,10,12,23,41,16,24
 若有且有 。则称为长度为 e e e的不下降序列。如上例中, 3 , 18 , 23 , 24 3,18,23,24 3,18,23,24为一个长度为4的不下降序列,同时也有 3 , 7 , 10 , 12 , 16 , 24 3,7,10,12,16,24 3,7,10,12,16,24长度为 6 6 6的不下降序列。程序要求,当原始数列给出后,求出最长的不下降数列的长度。


输入

第一行,一个数 n n n为多少个整数
第二行为 n n n个整数组成的序列

输出

求最长的不下降数列的长度


输入样例

10
3 18 7 14 10 12 23 41 16 24

输出样例

6

解题思路

这题我们直接用DP来做即可
f [ i ] f[i] f[i]为前 i i i个数中最大不下降序列长度,那就可以得出公式为

f [ i ] = m a x ( f [ i ] , f [ j ] + 1 ) f[i] = max(f[i], f[j] + 1) f[i]=max(f[i],f[j]+1)

程序如下

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>

using namespace std;

int n, f[10001], a[10001], ans;

int main()
{
	scanf("%d", &n);
	for(int i = 1; i <= n; ++i) 
	{
		scanf("%d", &a[i]);
		f[i] = 1;
	}
	for(int i = 2; i <= n; ++i)
	{
		for(int j = 1; j < i; ++j)
		 if(a[i] > a[j])
		  f[i] = max(f[i], f[j] + 1);
		ans = max(ans, f[i]);
	}
	printf("%d", ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值