【SPFA】最长路(洛谷)

本文介绍了使用SPFA算法解决有向无环图中最长路问题的方法。详细讲解了题目要求,输入输出格式,并提供了样例及解题思路。通过将最短路算法稍作修改,可以找到从顶点1到顶点n的最大路径长度。
摘要由CSDN通过智能技术生成

最长路


题目

  • 设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j。设w(i,j)为边的长度,请设计算法,计算图G中<1,n>间的最长路径。

输入

  • 输入文件longest.in的第一行有两个整数n和m,表示有n个顶点和m条边,接下来m行中每行输入3个整数a,b,v(表示从a点到b点有条边,边的长度为v)。

输出

  • 输出文件longest.out,一个整数,即1到n之间的最长路径.如果1到n之间没连通,输出-1。

输入样例

2 1
1 2 1

输出样例

1

说明

20%的数据,n≤100,m≤1000

40%的数据,n≤1,000,m≤10000

100%的数据,n≤1,500,m≤50000,最长路径不大于10^9


解题思路

其实这道题看起来好像很难,但是就是打一个最短路再改成最长的就即可.


程序如下

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
using namespace std;
int n,a[2001][3],x,y,M,z
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值