【图论】【Bellman-Ford算法】最短路径问题

本文介绍了如何运用Bellman-Ford算法求解平面上两点间的最短路径问题。通过给出的坐标点和连线信息,利用算法找出从源点到目标点的最短距离。样例输入和输出展示了算法的具体应用,并提供了解题思路。
摘要由CSDN通过智能技术生成

题目

平面上有n个点(N<=100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点直线的距离。现在的任务是找出从一点到另一点之间的最短路径。

输入

输入共有n+m+3行,其中:
第一行为一个整数n。
第2行到第n+1行(共n行),每行的两个整数x和y,描述一个点的坐标(以一个空格隔开)。
第n+2行为一个整数m,表示图中的连线个数。
此后的m行,每行描述一条连线,由两个整数I,j组成,表示第i个点和第j个点之间有连线。
最后一行:两个整数s和t,分别表示源点和目标点。

输出

输出仅一行,一个实数(保留两位小数),表示从S到T的最短路径的长度。

输入样例

5
0 0
2 0
2 2
0 2
3 1
5
1 2
1 3
1 4
2 5
3 5
1 5

输出样例

3.41

解题思路

其实就是用Bellman-Ford算法来算出即可

程序如下

#include<iostream>
#include<cstdio>
#include<cmath> 
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,q,p,x,y;
double e,w,b[102],u[102];
int k,a[1002][3],f[1002][1002];
bool t;
int main
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值