题目
平面上有n个点(N<=100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点直线的距离。现在的任务是找出从一点到另一点之间的最短路径。
输入
输入共有n+m+3行,其中:
第一行为一个整数n。
第2行到第n+1行(共n行),每行的两个整数x和y,描述一个点的坐标(以一个空格隔开)。
第n+2行为一个整数m,表示图中的连线个数。
此后的m行,每行描述一条连线,由两个整数I,j组成,表示第i个点和第j个点之间有连线。
最后一行:两个整数s和t,分别表示源点和目标点。
输出
输出仅一行,一个实数(保留两位小数),表示从S到T的最短路径的长度。
输入样例
5
0 0
2 0
2 2
0 2
3 1
5
1 2
1 3
1 4
2 5
3 5
1 5
输出样例
3.41
解题思路
其实就是用Bellman-Ford算法来算出即可
程序如下
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,q,p,x,y;
double e,w,b[102],u[102];
int k,a[1002][3],f[1002][1002];
bool t;
int main