原文链接 http://blog.csdn.net/masibuaa/article/details/16105073
正样本来源是INRIA数据集中的96*160大小的人体图片,使用时上下左右都去掉16个像素,截取中间的64*128大小的人体。
负样本是从不包含人体的图片中随机裁取的,大小同样是64*128(从完全不包含人体的图片中随机剪裁出64*128大小的用于人体检测的负样本)。
SVM使用的是OpenCV自带的CvSVM类。
首先计算正负样本图像的HOG描述子,组成一个特征向量矩阵,对应的要有一个指定每个特征向量的类别的类标向量,输入SVM中进行训练。
训练好的SVM分类器保存为XML文件,然后根据其中的支持向量和参数生成OpenCV中的HOG描述子可用的检测子参数,再调用OpenCV中的多尺度检测函数进行行人检测。
难例(Hard Example)是指利用第一次训练的分类器在负样本原图(肯定没有人体)上进行行人检测时所有检测到的矩形框,这些矩形框区域很明显都是误报,把这些误报的矩形框保存为图片,加入到初始的负样本集合中,重新进行SVM的训练,可显著减少误报。
用训练好的分类器在负样本原图上检测Hard Example见:用初次训练的SVM+HOG分类器在负样本原图上检测HardExample
Navneet Dalal在CVPR2005上的HOG原论文翻译见:http://blog.csdn.net/masibuaa/article/details/14056807
- #include <iostream>
- #include <fstream>
- #include <opencv2/core/core.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- #include <opencv2/objdetect/objdetect.hpp>
- #include <opencv2/ml/ml.hpp>
- using namespace std;
- using namespace cv;
- #define PosSamNO 2400 //正样本个数
- #define NegSamNO 12000 //负样本个数
- #define TRAIN false //是否进行训练,true表示重新训练,false表示读取xml文件中的SVM模型
- #define CENTRAL_CROP true //true:训练时,对96*160的INRIA正样本图片剪裁出中间的64*128大小人体
- //HardExample:负样本个数。如果HardExampleNO大于0,表示处理完初始负样本集后,继续处理HardExample负样本集。
- //不使用HardExample时必须设置为0,因为特征向量矩阵和特征类别矩阵的维数初始化时用到这个值
- #define HardExampleNO 4435
- //继承自CvSVM的类,因为生成setSVMDetector()中用到的检测子参数时,需要用到训练好的SVM的decision_func参数,
- //但通过查看CvSVM源码可知decision_func参数是protected类型变量,无法直接访问到,只能继承之后通过函数访问
- class MySVM : public CvSVM
- {
- public:
- //获得SVM的决策函数中的alpha数组
- double * get_alpha_vector()
- {
- return this->decision_func->alpha;
- }
- //获得SVM的决策函数中的rho参数,即偏移量
- float get_rho()
- {
- return this->decision_func->rho;
- }
- };
- int main()
- {
- //检测窗口(64,128),块尺寸(16,16),块步长(8,8),cell尺寸(8,8),直方图bin个数9
- HOGDescriptor hog(Size(64,128),Size(16,16),Size(8,8),Size(8,8),9);//HOG检测器,用来计算HOG描述子的
- int DescriptorDim;//HOG描述子的维数,由图片大小、检测窗口大小、块大小、细胞单元中直方图bin个数决定
- MySVM svm;//SVM分类器
- //若TRAIN为true,重新训练分类器
- if(TRAIN)
- {
- string ImgName;//图片名(绝对路径)
- ifstream finPos("INRIAPerson96X160PosList.txt");//正样本图片的文件名列表
- //ifstream finPos("PersonFromVOC2012List.txt");//正样本图片的文件名列表
- ifstream finNeg("NoPersonFromINRIAList.txt");//负样本图片的文件名列表
- Mat sampleFeatureMat;//所有训练样本的特征向量组成的矩阵,行数等于所有样本的个数,列数等于HOG描述子维数
- Mat sampleLabelMat;//训练样本的类别向量,行数等于所有样本的个数,列数等于1;1表示有人,-1表示无人
- //依次读取正样本图片,生成HOG描述子
- for(int num=0; num<PosSamNO && getline(finPos,ImgName); num++)
- {
- cout<<"处理:"<<ImgName<<endl;
- //ImgName = "D:\\DataSet\\PersonFromVOC2012\\" + ImgName;//加上正样本的路径名
- ImgName = "D:\\DataSet\\INRIAPerson\\INRIAPerson\\96X160H96\\Train\\pos\\" + ImgName;//加上正样本的路径名
- Mat src = imread(ImgName);//读取图片
- if(CENTRAL_CROP)
- src = src(Rect(16,16,64,128));//将96*160的INRIA正样本图片剪裁为64*128,即剪去上下左右各16个像素
- //resize(src,src,Size(64,128));
- vector<float> descriptors;//HOG描述子向量
- hog.compute(src,descriptors,Size(8,8));//计算HOG描述子,检测窗口移动步长(8,8)
- //cout<<"描述子维数:"<<descriptors.size()<<endl;
- //处理第一个样本时初始化特征向量矩阵和类别矩阵,因为只有知道了特征向量的维数才能初始化特征向量矩阵
- if( 0 == num )
- {
- DescriptorDim = descriptors.size();//HOG描述子的维数
- //初始化所有训练样本的特征向量组成的矩阵,行数等于所有样本的个数,列数等于HOG描述子维数sampleFeatureMat
- sampleFeatureMat = Mat::zeros(PosSamNO+NegSamNO+HardExampleNO, DescriptorDim, CV_32FC1);
- //初始化训练样本的类别向量,行数等于所有样本的个数,列数等于1;1表示有人,0表示无人
- sampleLabelMat = Mat::zeros(PosSamNO+NegSamNO+HardExampleNO, 1, CV_32FC1);
- }
- //将计算好的HOG描述子复制到样本特征矩阵sampleFeatureMat
- for(int i=0; i<DescriptorDim; i++)
- sampleFeatureMat.at<float>(num,i) = descriptors[i];//第num个样本的特征向量中的第i个元素
- sampleLabelMat.at<float>(num,0) = 1;//正样本类别为1,有人
- }
- //依次读取负样本图片,生成HOG描述子
- for(int num=0; num<NegSamNO && getline(finNeg,ImgName); num++)
- {
- cout<<"处理:"<<ImgName<<endl;
- ImgName = "D:\\DataSet\\NoPersonFromINRIA\\" + ImgName;//加上负样本的路径名
- Mat src = imread(ImgName);//读取图片
- //resize(src,img,Size(64,128));
- vector<float> descriptors;//HOG描述子向量
- hog.compute(src,descriptors,Size(8,8));//计算HOG描述子,检测窗口移动步长(8,8)
- //cout<<"描述子维数:"<<descriptors.size()<<endl;
- //将计算好的HOG描述子复制到样本特征矩阵sampleFeatureMat
- for(int i=0; i<DescriptorDim; i++)
- sampleFeatureMat.at<float>(num+PosSamNO,i) = descriptors[i];//第PosSamNO+num个样本的特征向量中的第i个元素
- sampleLabelMat.at<float>(num+PosSamNO,0) = -1;//负样本类别为-1,无人
- }
- //处理HardExample负样本
- if(HardExampleNO > 0)
- {
- ifstream finHardExample("HardExample_2400PosINRIA_12000NegList.txt");//HardExample负样本的文件名列表
- //依次读取HardExample负样本图片,生成HOG描述子
- for(int num=0; num<HardExampleNO && getline(finHardExample,ImgName); num++)
- {
- cout<<"处理:"<<ImgName<<endl;
- ImgName = "D:\\DataSet\\HardExample_2400PosINRIA_12000Neg\\" + ImgName;//加上HardExample负样本的路径名
- Mat src = imread(ImgName);//读取图片
- //resize(src,img,Size(64,128));
- vector<float> descriptors;//HOG描述子向量
- hog.compute(src,descriptors,Size(8,8));//计算HOG描述子,检测窗口移动步长(8,8)
- //cout<<"描述子维数:"<<descriptors.size()<<endl;
- //将计算好的HOG描述子复制到样本特征矩阵sampleFeatureMat
- for(int i=0; i<DescriptorDim; i++)
- sampleFeatureMat.at<float>(num+PosSamNO+NegSamNO,i) = descriptors[i];//第PosSamNO+num个样本的特征向量中的第i个元素
- sampleLabelMat.at<float>(num+PosSamNO+NegSamNO,0) = -1;//负样本类别为-1,无人
- }
- }
- 输出样本的HOG特征向量矩阵到文件
- //ofstream fout("SampleFeatureMat.txt");
- //for(int i=0; i<PosSamNO+NegSamNO; i++)
- //{
- // fout<<i<<endl;
- // for(int j=0; j<DescriptorDim; j++)
- // fout<<sampleFeatureMat.at<float>(i,j)<<" ";
- // fout<<endl;
- //}
- //训练SVM分类器
- //迭代终止条件,当迭代满1000次或误差小于FLT_EPSILON时停止迭代
- CvTermCriteria criteria = cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, FLT_EPSILON);
- //SVM参数:SVM类型为C_SVC;线性核函数;松弛因子C=0.01
- CvSVMParams param(CvSVM::C_SVC, CvSVM::LINEAR, 0, 1, 0, 0.01, 0, 0, 0, criteria);
- cout<<"开始训练SVM分类器"<<endl;
- svm.train(sampleFeatureMat, sampleLabelMat, Mat(), Mat(), param);//训练分类器
- cout<<"训练完成"<<endl;
- svm.save("SVM_HOG.xml");//将训练好的SVM模型保存为xml文件
- }
- else //若TRAIN为false,从XML文件读取训练好的分类器
- {
- svm.load("SVM_HOG_2400PosINRIA_12000Neg_HardExample(误报少了漏检多了).xml");//从XML文件读取训练好的SVM模型
- }
- /*************************************************************************************************
- 线性SVM训练完成后得到的XML文件里面,有一个数组,叫做support vector,还有一个数组,叫做alpha,有一个浮点数,叫做rho;
- 将alpha矩阵同support vector相乘,注意,alpha*supportVector,将得到一个列向量。之后,再该列向量的最后添加一个元素rho。
- 如此,变得到了一个分类器,利用该分类器,直接替换opencv中行人检测默认的那个分类器(cv::HOGDescriptor::setSVMDetector()),
- 就可以利用你的训练样本训练出来的分类器进行行人检测了。
- ***************************************************************************************************/
- DescriptorDim = svm.get_var_count();//特征向量的维数,即HOG描述子的维数
- int supportVectorNum = svm.get_support_vector_count();//支持向量的个数
- cout<<"支持向量个数:"<<supportVectorNum<<endl;
- Mat alphaMat = Mat::zeros(1, supportVectorNum, CV_32FC1);//alpha向量,长度等于支持向量个数
- Mat supportVectorMat = Mat::zeros(supportVectorNum, DescriptorDim, CV_32FC1);//支持向量矩阵
- Mat resultMat = Mat::zeros(1, DescriptorDim, CV_32FC1);//alpha向量乘以支持向量矩阵的结果
- //将支持向量的数据复制到supportVectorMat矩阵中
- for(int i=0; i<supportVectorNum; i++)
- {
- const float * pSVData = svm.get_support_vector(i);//返回第i个支持向量的数据指针
- for(int j=0; j<DescriptorDim; j++)
- {
- //cout<<pData[j]<<" ";
- supportVectorMat.at<float>(i,j) = pSVData[j];
- }
- }
- //将alpha向量的数据复制到alphaMat中
- double * pAlphaData = svm.get_alpha_vector();//返回SVM的决策函数中的alpha向量
- for(int i=0; i<supportVectorNum; i++)
- {
- alphaMat.at<float>(0,i) = pAlphaData[i];
- }
- //计算-(alphaMat * supportVectorMat),结果放到resultMat中
- //gemm(alphaMat, supportVectorMat, -1, 0, 1, resultMat);//不知道为什么加负号?
- resultMat = -1 * alphaMat * supportVectorMat;
- //得到最终的setSVMDetector(const vector<float>& detector)参数中可用的检测子
- vector<float> myDetector;
- //将resultMat中的数据复制到数组myDetector中
- for(int i=0; i<DescriptorDim; i++)
- {
- myDetector.push_back(resultMat.at<float>(0,i));
- }
- //最后添加偏移量rho,得到检测子
- myDetector.push_back(svm.get_rho());
- cout<<"检测子维数:"<<myDetector.size()<<endl;
- //设置HOGDescriptor的检测子
- HOGDescriptor myHOG;
- myHOG.setSVMDetector(myDetector);
- //myHOG.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());
- //保存检测子参数到文件
- ofstream fout("HOGDetectorForOpenCV.txt");
- for(int i=0; i<myDetector.size(); i++)
- {
- fout<<myDetector[i]<<endl;
- }
- /**************读入图片进行HOG行人检测******************/
- //Mat src = imread("00000.jpg");
- //Mat src = imread("2007_000423.jpg");
- Mat src = imread("1.png");
- vector<Rect> found, found_filtered;//矩形框数组
- cout<<"进行多尺度HOG人体检测"<<endl;
- myHOG.detectMultiScale(src, found, 0, Size(8,8), Size(32,32), 1.05, 2);//对图片进行多尺度行人检测
- cout<<"找到的矩形框个数:"<<found.size()<<endl;
- //找出所有没有嵌套的矩形框r,并放入found_filtered中,如果有嵌套的话,则取外面最大的那个矩形框放入found_filtered中
- for(int i=0; i < found.size(); i++)
- {
- Rect r = found[i];
- int j=0;
- for(; j < found.size(); j++)
- if(j != i && (r & found[j]) == r)
- break;
- if( j == found.size())
- found_filtered.push_back(r);
- }
- //画矩形框,因为hog检测出的矩形框比实际人体框要稍微大些,所以这里需要做一些调整
- for(int i=0; i<found_filtered.size(); i++)
- {
- Rect r = found_filtered[i];
- r.x += cvRound(r.width*0.1);
- r.width = cvRound(r.width*0.8);
- r.y += cvRound(r.height*0.07);
- r.height = cvRound(r.height*0.8);
- rectangle(src, r.tl(), r.br(), Scalar(0,255,0), 3);
- }
- imwrite("ImgProcessed.jpg",src);
- namedWindow("src",0);
- imshow("src",src);
- waitKey();//注意:imshow之后必须加waitKey,否则无法显示图像
- /******************读入单个64*128的测试图并对其HOG描述子进行分类*********************/
- 读取测试图片(64*128大小),并计算其HOG描述子
- Mat testImg = imread("person014142.jpg");
- //Mat testImg = imread("noperson000026.jpg");
- //vector<float> descriptor;
- //hog.compute(testImg,descriptor,Size(8,8));//计算HOG描述子,检测窗口移动步长(8,8)
- //Mat testFeatureMat = Mat::zeros(1,3780,CV_32FC1);//测试样本的特征向量矩阵
- 将计算好的HOG描述子复制到testFeatureMat矩阵中
- //for(int i=0; i<descriptor.size(); i++)
- // testFeatureMat.at<float>(0,i) = descriptor[i];
- 用训练好的SVM分类器对测试图片的特征向量进行分类
- //int result = svm.predict(testFeatureMat);//返回类标
- //cout<<"分类结果:"<<result<<endl;
- system("pause");
- }
结果:
(1) 1500个INRIA正样本,2000个负样本,结果误报太多:
(2) 2400个INRIA正样本,12000个负样本,结果表明负样本增多后误报明显减少,但依然有不少误报:
(3)2400个INRIA正样本,12000个负样本 + 4435个用(2)中的分类器在负样本原图上检测出来的Hard Example,
结果误报明显减少,几乎没有误报了,但同时漏检率增加:
上图中的两个小女孩都没有被检测出来
(4)下面是OpenCV中HOG检测器的默认SVM参数的结果,OpenCV自带的SVM参数也是用INRIA数据集训练得到的:
上图中的两个小女孩用OpenCV默认SVM参数也检测不出来。
所以感觉要想效果好的话,还应该加大正样本的个数。
源码下载,环境为VS2010 + OpenCV2.4.4
http://download.csdn.net/detail/masikkk/6547973
1500个INRIA正样本,2000个负样本训练好的SVM下载(XML文件):http://pan.baidu.com/s/18CCos
2400个INRIA正样本,12000个负样本训练好的SVM下载(XML文件):http://pan.baidu.com/s/1gmudL
2400个INRIA正样本,12000个负样本 + 4435个用(2)中的分类器在负样本原图上检测出来的Hard Example 训练好的SVM下载(XML文件):http://pan.baidu.com/s/126Yoc