利用Hog特征和SVM分类器进行行人检测

本文详细介绍了如何利用Hog特征和SVM分类器进行行人检测,包括训练样本的准备、裁剪、特征提取、样本标签赋值、SVM训练以及最终的分类器保存和应用。这一方法源于Navneet Dalal和Bill Triggs的研究,成为OpenCV中行人检测的标准算法。为了得到更好的检测效果,文章强调了大量多样化的训练样本的重要性,并提供了训练流程和参考代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        之前介绍过Hog特征(http://blog.csdn.net/carson2005/article/details/7782726),也介绍过SVM分类器(http://blog.csdn.net/carson2005/article/details/6453502 );而本文的目的在于介绍利用Hog特征和SVM分类器来进行行人检测。

        在2005CVPR上,来自法国的研究人员Navneet Dalal Bill Triggs提出利用Hog进行特征提取,利用线性SVM作为分类器,从而实现行人检测。而这两位也通过大量的测试发现,Hog+SVM是速度和效果综合平衡性能较好的一种行人检测方法。后来,虽然很多研究人员也提出了很多改进的行人检测算法,但基本都以该算法为基础框架。因此,Hog+SVM也成为一个里程表式的算法被写入到OpenCV中。在OpenCV2.0之后的版本,都有Hog特征描述算子的API,而至于SVM,早在OpenCV1.0版本就已经集成进去了;OpenCV虽然提供了HogSVMAPI,也提供了行人检测的sample,遗憾的是,OpenCV并没有提供样本训练的sample。这也就意味着,很多人只能用

### 基于HOG特征SVM分类器行人检测算法 #### 理论基础 方向梯度直方图(Histogram of Oriented Gradient, HOG)是一种常用的特征描述符,在计算机视觉领域被广泛应用于目标检测任务中。其核心思想是通过计算统计图像局部区域的方向梯度直方图来构建特征向量[^1]。这些特征能够很好地捕捉到边缘信息以及形状轮廓,因此非常适合用于区分背景其他对象。 支持向量机(Support Vector Machine, SVM)则是一种监督学习模型,擅长解决二分类问题。当结合HOG特征时,SVM可以高效地区分行人与其他非行人物体[^2]。 --- #### 实现流程 以下是基于HOG特征SVM分类器实现行人检测的主要过程: 1. **提取HOG特征** 使用OpenCV库中的`cv2.HOGDescriptor()`类创建一个HOG描述符实例,并设置默认的人体检测参数。 ```python import cv2 hog = cv2.HOGDescriptor() hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector()) ``` 上述代码初始化了一个预训练好的HOG描述符,默认加载了针对人体检测优化过的SVM权重矩阵[^3]。 2. **应用多尺度滑动窗口检测** 利用`hog.detectMultiScale()`方法执行多尺度滑动窗口扫描,从而定位可能存在的行人位置及其大小。 ```python image = cv2.imread('path_to_image.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) rects, weights = hog.detectMultiScale(gray, winStride=(4, 4), padding=(8, 8), scale=1.05) ``` 参数解释如下: - `winStride`: 定义每次移动窗口的距离步长。 - `padding`: 设置边界填充像素数量。 - `scale`: 控制图像金字塔缩放比例因子。 3. **绘制检测框并过滤重叠区域** 需要对返回的结果进行进一步处理,比如去除冗余矩形框或者调整置信阈值筛选高质量候选区。 ```python for (x, y, w, h) in rects: cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.imshow("Detected Pedestrians", image) cv2.waitKey(0) cv2.destroyAllWindows() ``` --- #### 关键技术点解析 - **HOG特征的作用** HOG特征通过对输入图片分块操作后分别统计各子区域内梯度幅值分布情况形成高维矢量表示形式,这种表达方式对于保持空间结构不变性具有重要意义。 - **SVM分类器的功能** 经过训练后的线性核函数型别的SVM能有效判别测试样本属于哪一类标签类别,即是否为人形物体。 - **性能调优建议** 可尝试调节`detectMultiScale`里的各项超参数值组合寻找最佳平衡点达到精度速度兼顾效果;另外还可以引入级联滤波机制减少误报率提升整体鲁棒性表现。 ---
评论 160
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值