【阿姆斯特朗数】
题目描述
编程找出所有的三位数到七位数中的阿姆斯特朗数。阿姆斯特朗数也叫水仙花数,它的定义如下:若一个n位自然数的各位数字的n次方之和等于它本身,则称这个自然数为阿姆斯特朗数。例如,153(153=1X1X1+3X3X3+5X5X5)是一个三位的阿姆斯特朗数,8208则是一个四位的阿姆斯特朗数。
输入描述
无输入
输出描述
每行输出一个阿姆斯特朗数,按从小到大的顺序按行输出
AC:
#include<bits/stdc++.h>
using namespace std;
int a[10][10];
int main(){
for(int i=1;i<=9;i++){//存储1~9的n次方
a[i][1]=i;
for(int j=2;j<=7;j++){
a[i][j]=a[i][j-1]*i;
}
}
for(int i=100;i<=9999999;i++){//便利n次方
int cnt=0;
int n=i;
while(n!=0){//数位分离,求每个数位的次方
n=n/10;
cnt++;//计数
}
int sum=0;
n=i;
while(n!=0){
sum+=a[n%10][cnt];//相加每个数位的次方
n/=10;
}
if(sum==i){//如果数组里有这个数就输出
cout<<sum<<endl;
}
}
return 0;
}
【飞行路线】
题目描述
贝西想到一个更温暖的地方去度过这个寒冷的冬天。不幸的是,他发现只有一家名叫AB的航空公司愿意把票卖给奶牛,而且这些票的构成有些奇怪。AB拥有N架飞机,每架都有一个特定的飞行路线,这个飞行路线包含2个或更多的城市。例如,一架飞机的路线可能是从城市1开始,然后飞到城市5,再飞到城市2,最后飞到城市8.没有城市会在一条路线上出现多次。如果贝西决定使用这个路线,他可以在一条路线的任意一个城市上飞机,然后在路线上任意一个城市下飞机。他不用一定在第一个城市上飞机,在最后一个城市下飞机。每条路线会有一个价格,不管贝西沿途经过多少城市,他都要付这么多钱
贝西想找到最近的从城市A到城市B的距离。由于他不想被复杂的行程困惑,他想只使用一条单独的路线。请帮助他决定他最少应该付多少钱
输入描述
第一行包含3个数字,A、B、N
下面的2N行,描述可用的路线,每条路线的描述占两行。第一条路线包含路线费用,以及沿途有多少个城市(不超过500个)。第2行包含一个按顺序的城市的列表
路线费用不超过1000。
输出描述
输出贝西用一条飞行路线从城市A飞到城市B的最小费用。如果没有这样的路线,输出“-1”
AC:
#include<bits/stdc++.h>
using namespace std;
int main(){
int min=99999,a,b,n,m,x,y,f=0;
cin>>a>>b>>n;
for(int i=1;i<=n;i++){
cin>>m>>x;
for(int j=1;j<=x;j++){
cin>>y;
if(y==a){
f=1;
}
if(y==b&&f==1){
if(min>m){
min=m;
}
}
}
f=0;
}
if(min==99999){
cout<<"-1";
return 0;
}
cout<<min;
return 0;
}