BZOJ1613 [Usaco2007 Jan]Running贝茜的晨练计划

2 篇文章 0 订阅

  题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1613

  水题,DP

  f[i][j]表示第i秒末疲劳度为j时的最大跑步距离

  那么两种情况,跑步和休息

  休息也分两种情况,疲劳度>0和疲劳度=0

  转移方程很好推,见代码

  贴代码

#include<cstdio>
#include<cstring>
using namespace std;
int n,m;
int f[10005][505];
int a[10005];
char nc(){
	static char buf[100000],*p1=buf,*p2=buf;
	return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
int read(int &x){
	char ch=nc();int ff=1,res=0;
	while (!('0'<=ch&&ch<='9'))ch=='-'?ff=-1:0,ch=nc();
	while ('0'<=ch&&ch<='9')res=(res<<3)+(res<<1)+ch-'0',ch=nc();
	x=ff*res;
}
int Max(int x,int y){
	return x>y?x:y;
}
int main(){
//	freopen("1613.in","r",stdin);
//	freopen("1613.out","w",stdout);
	read(n);read(m);
	for (int i=1;i<=n;i++)read(a[i]);
	memset(f,0,sizeof(f));
	for (int i=0;i<=n;i++)
		for (int j=0;j<=m;j++){
		//	printf("%d %d %d\n",i,j,f[i][j]);
			if (j+1<=m)f[i+1][j+1]=Max(f[i+1][j+1],f[i][j]+a[i+1]);//跑1s 
			if (i+j<=n)f[i+j][0]=Max(f[i+j][0],f[i][j]);//开始休息 
			if (j==0)f[i+1][0]=Max(f[i+1][0],f[i][0]);//继续休息,不跑 
		}
	printf("%d",f[n][0]);
	return 0;
}

【写的有漏洞的,欢迎路过大神吐槽】

  2017/08/15 23:11:19

  Ending. 

好的,这是一道经典的单调栈问题。题目描述如下: 有 $n$ 个湖,第 $i$ 个湖有一个高度 $h_i$。现在要在这些湖之间挖一些沟渠,使得相邻的湖之间的高度差不超过 $d$。请问最少需要挖多少个沟渠。 这是一道单调栈的典型应用题。我们可以从左到右遍历湖的高度,同时使用一个单调栈来维护之前所有湖的高度。具体来说,我们维护一个单调递增的栈,栈中存储的是湖的下标。假设当前遍历到第 $i$ 个湖,我们需要在之前的湖中找到一个高度最接近 $h_i$ 且高度不超过 $h_i-d$ 的湖,然后从这个湖到第 $i$ 个湖之间挖一条沟渠。具体的实现可以参考下面的代码: ```c++ #include <cstdio> #include <stack> using namespace std; const int N = 100010; int n, d; int h[N]; stack<int> stk; int main() { scanf("%d%d", &n, &d); for (int i = 1; i <= n; i++) scanf("%d", &h[i]); int ans = 0; for (int i = 1; i <= n; i++) { while (!stk.empty() && h[stk.top()] <= h[i] - d) stk.pop(); if (!stk.empty()) ans++; stk.push(i); } printf("%d\n", ans); return 0; } ``` 这里的关键在于,当我们遍历到第 $i$ 个湖时,所有比 $h_i-d$ 小的湖都可以被舍弃,因为它们不可能成为第 $i$ 个湖的前驱。因此,我们可以不断地从栈顶弹出比 $h_i-d$ 小的湖,直到栈顶的湖高度大于 $h_i-d$,然后将 $i$ 入栈。这样,栈中存储的就是当前 $h_i$ 左边所有高度不超过 $h_i-d$ 的湖,栈顶元素就是最靠近 $h_i$ 且高度不超过 $h_i-d$ 的湖。如果栈不为空,说明找到了一个前驱湖,答案加一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值