二维前缀和与差分

二维前缀和与差分

暴力做法的优化

O ( n 2 ) O(n^2) O(n2)-> O ( 1 ) O(1) O(1)

二维前缀和

应用场景:多次在矩形内求和

sum[i][j]矩形区域 ( 1 , 1 ) (1,1) (1,1)为左上角, ( i , j ) (i,j) (i,j)为右下角,对应区域元素总和

暴力: O ( n 2 ) O(n^2) O(n2)

T T T次询问,复杂度 O ( T ∗ n 2 ) O(T*n^2) O(Tn2)

1.预处理前缀和数组

思想:图形的拼接与剪裁(容斥)

sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+``a[i][j];

for(int i=1;i<=n;i++){
    for(int j=1;j<=n;j++){
       cin>>a[i][j];
        sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j];
    }
}

时间复杂度 O ( n ∗ m ) O(n*m) O(nm)

2.矩形区域内求和 O ( 1 ) O(1) O(1)

int T;
cin>>T;
while(T--){
    int xa,ya,yb,xb;
    cin>>xa>>ya>>xb>>yb;
    int ans=sum[xb][yb]-sum[xb][ya-1]-sum[xa-1][yb]+sum[xa-1][ya-1];
    cout<<ans<<'\n';
}
例题:二维前缀和
#include<iostream>
#define N 1005
using namespace std;
int a[N][N],sum[N][N];
int main(){
  ios::sync_with_stdio(false);
  cin.tie(0);
  int n,m,T;
  cin>>n>>m>>T;
  for(int i=1;i<=n;i++)
      for(int j=1;j<=m;j++)
          cin>>a[i][j],sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j];
  while(T--){
      int xa,ya,yb,xb;
    cin>>xa>>ya>>xb>>yb;
    int ans=sum[xb][yb]-sum[xb][ya-1]-sum[xa-1][yb]+sum[xa-1][ya-1];
    cout<<ans<<'\n';
  }
    return 0;
}



例题:矩形
#include<iostream>
using namespace std;
int a[105][105],sum[105][105]
int Sum(int xa,int ya,int xb,int yb){
    return sum[xb][yb]-sum[xb][ya-1]-sum[xa-1][yb]+sum[xa-1][ya-1];
}
int main(){
    int n,x,y;
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>x>>y;
        a[x][y]=1;
    }    
    for(int i=1;i<=100;i++){
        for(int j=1;j<=100;i++){
            sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j];
        }    
    }
    for(int xa=1;xa<=100;xa++){
       for(int ya=1;ya<=100;ya++){  
           for(int xb=xa+1;xb<=100;xb++){
                for(int yb=ya+1;yb<=100;yb++){
                        maxn=max(maxn,Sum(xa,ya,xb,yb)-Sum(xa+1,ya+1,xb-1,yb-1));                  
                }
            }
        }
    }    
    return 0;
}

差分

二维差分
如果扩展到二维,我们需要让二维数组被选中的子矩阵中的每个元素的值加上 c c c,是否也可以达到$O(1)的时间复杂度。答案是可以的,考虑二维差分。

a a a数组是 b b b数组的前缀和数组,那么 b b b a a a差分数组

原数组: a [ i ] [ j ] a[i][j] a[i][j]

我们去构造差分数组: b [ i ] [ j ] b[i][j] b[i][j]

使得 a a a数组中 a [ i ] [ j ] a[i][j] a[i][j] b b b数组左上角 ( 1 , 1 ) (1,1) (1,1)到右下角 ( i , j ) (i,j) (i,j)所包围矩形元素的和。

如何构造 b b b数组呢?

我们去逆向思考。

同一维差分,我们构造二维差分数组目的是为了 让原二维数组a中所选中子矩阵中的每一个元素加上c的操作,可以由 O ( n ∗ m ) O(n*m) O(nm)的时间复杂度优化成 O ( 1 ) O(1) O(1)

已知原数组 a a a中被选中的子矩阵为 以 ( x 1 , y 1 ) (x1,y1) (x1,y1)为左上角,以 ( x 2 , y 2 ) (x2,y2) (x2,y2)为右下角所围成的矩形区域;

始终要记得, a a a数组是 b b b数组的前缀和数组,比如对 b b b数组的 b [ i ] [ j ] b[i][j] b[i][j]的修改,会影响到a数组中从 a [ i ] [ j ] a[i][j] a[i][j]及往后的每一个数。

假定我们已经构造好了 b b b数组,类比一维差分,我们执行以下操作
来使被选中的子矩阵中的每个元素的值加上 c c c

b[x1][y1] + = c;

b[x1,][y2+1] - = c;

b[x2+1][y1] - = c;

b[x2+1][y2+1] + = c;

每次对b数组执行以上操作,等价于:

for(int i=x1;i<=x2;i++) for(int j=y1;j<=y2;j++) a[i][j]+=c;
我们画个图去理解一下这个过程:

b [ x 1 ] [ y 1 ] + = c ; b[x1][y1] +=c; b[x1][y1]+=c; 对应图1 ,让整个a数组中蓝色矩形面积的元素都加上了c。

b [ x 1 ] [ y 2 + 1 ] − = c ; b[x1][y2+1]-=c; b[x1][y2+1]=c; 对应图2 ,让整个a数组中绿色矩形面积的元素再减去c,使其内元素不发生改变。

b [ x 2 + 1 ] [ y 1 ] − = c ; b[x2+1][y1]- =c; b[x2+1][y1]=c;对应图3 ,让整个a数组中紫色矩形面积的元素再减去c,使其内元素不发生改变。

b [ x 2 + 1 ] [ y 2 + 1 ] + = c ; b[x2+1][y2+1]+=c; b[x2+1][y2+1]+=c; 对应图4,让整个a数组中红色矩形面积的元素再加上c,红色内的相当于被减了两次,再加上一次 c c c,才能使其恢复。

在这里插入图片描述

我们将上述操作封装成一个插入函数:

void insert(int x1,int y1,int x2,int y2,int c){
    //对b数组执行插入操作,等价于对a数组中的(x1,y1)到(x2,y2)之间的元素都加上了c
    b[x1][y1]+=c,b[x2+1][y1]-=c,b[x1][y2+1]-=c,b[x2+1][y2+1]+=c;
}

我们可以先假想a数组为空,那么b数组一开始也为空,但是实际上 a a a数组并不为空,因此我们每次让 c h a [ i ] [ j ] = a [ i ] [ j ] − a [ i ] [ j − 1 ] − a [ i − 1 ] [ j ] + a [ i − 1 ] [ j − 1 ] ; cha[i][j]=a[i][j]-a[i][j-1]-a[i-1][j]+a[i-1][j-1]; cha[i][j]=a[i][j]a[i][j1]a[i1][j]+a[i1][j1];这样就可以构成差分数组

差分模板
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<vector>
#include<stack>
#include<string>
#include<cmath>
#include<cstring>
#include<set>
#include<map>
using namespace std;
const int N=1005;
int a[N][N],cha[N][N];
int main(){
//    freopen("test.in","r",stdin);
//    freopen("test.out","w",stdout);
  ios::sync_with_stdio(false);
  cin.tie(0);
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            cin>>a[i][j];
            cha[i][j]=a[i][j]-a[i][j-1]-a[i-1][j]+a[i-1][j-1];
        }
    }
    int q;
    cin>>q;
    while(q--){
        int xa,ya,xb,yb,x;
        cin>>xa>>ya>>xb>>yb>>x;
        cha[xa][ya]+=x;
        cha[xb+1][ya]-=x;
        cha[xa][yb+1]-=x;
        cha[xb+1][yb+1]+=x;
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            cha[i][j]+=cha[i-1][j]+cha[i][j-1]-cha[i-1][j-1];
        }
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            cout<<cha[i][j]<<' ';
        }
        cout<<'\n';
    }
    return 0;
}



例题:地毯

思路:直接模拟即可

暴力:
#include<iostream>
using namespace std; 
int t[1005][1005];

int main()
{
    int n, m, x1, x2, y1, y2;
    cin >> n >> m;
    for (int k = 1; k <= m; ++k)
    {
        cin >> x1 >> y1 >> x2 >> y2;
        for (int i = x1; i <= x2; ++i)
            for (int j = y1; j <= y2; ++j)
                ++t[i][j];
    }//暴力模拟
    for (int i = 1; i <= n; ++i)
    {
        for (int j = 1; j <= n; ++j)
            cout << t[i][j] << ' ';
        cout << endl;
    }
}
差分优化:
#include<set>
#include <iostream>
#include<cstdio>
using namespace std;
const int N=1005;
int a[N][N],b[N][N];
int main(){
    int n,m;cin>>n>>m;
    int xa,ya,xb,yb;
    for(int i=1;i<=m;i++)
        cin>>xa>>ya>>xb>>yb,b[xa][ya]++,b[xb+1][ya]--,b[xa][yb+1]--,b[xb+1][yb+1]++;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++)
            a[i][j]=a[i][j-1]+a[i-1][j]-a[i-1][j-1]+b[i][j],cout<<a[i][j]<<" ";
        cout<<'\n';
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值