Given two integers in n and k, return all possible combinations of k numbers out of 1...n.
给定两个数n和k,从1到n中找出所有的无重复的k个数的组合。
本次实现的算法,其实是一个深度遍历。
所遍历的树的结点的值属于1...n。每一个结点的子结点的特征是,子结点的值大于父结点。
返回的结果是,从根结点到所有深度为k的结点的路径。
当然,用广度遍历及链表或者栈的方式也可以实现。但是,广度方式要同时保存所有路径,也没有降底时间复杂度,代码也更加复杂。
算法思想:为了避免重复,设置一个工作指针指向当前允许的最小值。然后,排列出剩余(比当前值大)的所有可能排列到当前值之后的值。再依次对子结点进行深度遍历,直到遇到终止条件。
算法:
存储组合的数组solution
存储完整solution的数据result
1. 若当前solution满足条件,则存入result,并返回上一层;(注意,当前solution要满足条件的是,从1...n中挑出k个数的组合,那么solution的大小为k时满足一个完整solution的条件)否则进行2。
2. 以当前结点为根结点,以所有大于当前结点的值为当前结点i的子结点,并遍历子结点。将当前子结点j存入solution进入1,返回后从solution中删除子结点j。
3. 当前结点子结点j右移一位,若未遍历完进行2;否则返回上一层。
C++实现:
class Solution {
public:
vector<vector<int>> combine(int n, int k)
{
vector<vector<int>> result;
if (n < k) {
return result;
}
vector<int> solution;
recursiver(result, solution, k, 1, n);
return result;
}
private:
void recursiver(vector<vector<int>> &result, vector<int> &solution, int k, int index, int n)
{
if (solution.size()==k) {
result.push_back(solution);
return;
}
for (int i = index; i <= n; i++) {
solution.push_back(i);
recursiver(result, solution, k, i + 1, n);
solution.pop_back();
}
}
};