leetcode----Combinations

Given two integers in n and k, return all possible combinations of k numbers out of 1...n.

给定两个数n和k,从1到n中找出所有的无重复的k个数的组合。


本次实现的算法,其实是一个深度遍历。

所遍历的树的结点的值属于1...n。每一个结点的子结点的特征是,子结点的值大于父结点。

返回的结果是,从根结点到所有深度为k的结点的路径。

当然,用广度遍历及链表或者栈的方式也可以实现。但是,广度方式要同时保存所有路径,也没有降底时间复杂度,代码也更加复杂。


算法思想:为了避免重复,设置一个工作指针指向当前允许的最小值。然后,排列出剩余(比当前值大)的所有可能排列到当前值之后的值。再依次对子结点进行深度遍历,直到遇到终止条件。


算法:

存储组合的数组solution

存储完整solution的数据result

1. 若当前solution满足条件,则存入result,并返回上一层;(注意,当前solution要满足条件的是,从1...n中挑出k个数的组合,那么solution的大小为k时满足一个完整solution的条件)否则进行2。

2. 以当前结点为根结点,以所有大于当前结点的值为当前结点i的子结点,并遍历子结点。将当前子结点j存入solution进入1,返回后从solution中删除子结点j。

3. 当前结点子结点j右移一位,若未遍历完进行2;否则返回上一层。


C++实现:

class Solution {
public:
    vector<vector<int>> combine(int n, int k)
    {
        vector<vector<int>> result;
        if (n < k) {
            return result;
        }
        vector<int> solution;
        recursiver(result, solution, k, 1, n);
        return result;
    }
private:
    void recursiver(vector<vector<int>> &result, vector<int> &solution, int k, int index, int n)
    {
        if (solution.size()==k) {
            result.push_back(solution);
            return;
        }
        
        for (int i = index; i <= n; i++) {
            solution.push_back(i);
            recursiver(result, solution, k, i + 1, n);
            solution.pop_back();
        }
    }
};





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值