Integer to Roman
Roman与Integer的转换规则?
From Wikipedia
现在用的罗马数字由7个字符表示,如下表:
字符 | 值 |
---|---|
I | 1 |
V | 5 |
X | 10 |
L | 50 |
C | 100 |
D | 500 |
M | 1,000 |
罗马数字组成的值以相加(或相减)的形式得到,如:
罗马数字组合 | 结果 | 组合方式 |
---|---|---|
CCVII | 100 + 100 + 5 + 1 + 1 = 207 | 加 |
MLXVI | 1,000 + 50 + 10 + 5 + 1 = 1066 | 加 |
IV | -1 + 5 = 4 | 减 |
MCMLIV | 1,000 + (-100 + 1,000) + 50 + (-1 + 5) = 1954 | 混合 |
加法比较好理解,从左往右或者反过来直接加上就可以。
里面混合的减法是『左亏右盈』:较小的数字在比较大的数字左边
(如IV
)表示不足
(如IV
表示比V
差I
)。
比较好的计算方法就是,从右往左读:
- 若当前指针的下一个数字大于等于当前数字,则将当前数字加到之前的结果上,指针左移一位;否则,下一数字小于当前数字,进行2
用当前数字减去下一数字并加到之前的结果上,进行1.
所以这个题的思路应该是找出一组最大的单位组合。
分析
一些博客给出了前缀集,但是没有给出解释。。。
JustDoIT的博客分析的挺好,就是实现的有关不直观。
转换之前先看一下罗马数字的组合:
数字范围 | 罗马数字 |
---|---|
1 ~ 9 | I II III IV V VI VII VIII IX |
10 ~ 19 | X XI XII XIII XIV XV XVI XVII XVIII XIX |
20 ~ 29 | XX XXI XXII XXIII XXIV XXV XXVI XXVII XXVIII XXIX |
。。。 | 。。。 |
现在要找出这些字符组合的『单位元素』,这个地方感觉不太好想,感觉像是在减前缀编码。因为整数转换成罗马数字的时候,应该每次减去一个最大的唯一的前缀。
那么看一下都有哪些前缀(如果扫描到一个组合不能用前缀集中的元素表示,则加入前缀集):
前缀集 | 扫描组合 |
---|---|
ø | I |
I | II |
I | III |
I | IV |
IV I | V |
V IV I | VI |
V IV I | VII |
V IV I | VIII |
V IV I | IX |
IX V IV I | X |
X IX V IV I | XI |
… | … |
X IX V IV I | XXXIX |
到这里可以看出表示0~9
的单位元素有IX V IV I
,
下面看一下十位是怎么表示的(用*
表示其中的个位数)
前缀集 | 扫描组合 | 说明 |
---|---|---|
ø | X* | 10-19 |
X | XX* | 20-19 |
X | XXX* | 30-39 |
X | XL* | 40-49 |
XL X | L* | 50-59 |
L XL X | LX* | 60-69 |
L XL X | LXX* | 70-79 |
L XL X | LXXX* | 80-89 |
L XL X | XC* | 90-99 |
XC L XL X | C* | 100-109 |
… | … |
现在可以看出10~99
中十位数字的前缀只有XC L XL X
同样可以推出下面的前缀表:
范围 | 前缀 |
---|---|
个位 | IX V IV I |
十位 | XC L XL X |
百位 | CM D CD C |
… | … |
程序实现
3999 / 3999 test cases passed.
Status: Accepted
Runtime: 32 ms
/*
*Author: cslzy
*Emaile: lizhenyang_2008@163.com
*/
class Solution {
public:
string intToRoman(int num) {
string prefixes[] = {"M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX" ,"V","IV" ,"I"};
int s = sizeof(prefixes) / sizeof(prefixes[0]);
int values[] = {1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1};
string result = "";
int i = 0;
while(i< s && num < values[i]) i++;
while(num > 0)
{
while(num >= values[i])
{
num -= values[i];
result += prefixes[i];
}
i++;
}
return result;
}
};