机器学习笔记_李宏毅_P4-Basic Concept_error的来源

李宏毅老师的机器学习笔记


课程视频

error 的来源

  • Bias
  • Variance

在这里插入图片描述

Bia和Variance如图

个人理解:Bias就像是是偏离目标;Variance就像是在目标周围发散

在这里插入图片描述

Variance很大会导致Overfitting:模型太复杂,预测效果差
Bias很大会导致Underfitting:训练效果差

在这里插入图片描述

什么是Underfitting?

在这里插入图片描述

以及如何处理?

在这里插入图片描述

什么是Overrfitting?

在这里插入图片描述

以及如何处理?

在这里插入图片描述

如何同时处理Bias和Variance

  • Cross Validation
    在这里插入图片描述
  • N-fold Cross Validation
    在这里插入图片描述

总结

  • 误差的来源
    Bias: 离目标越远,偏差越大
    Variance:点越发散,方差越大
  • 模型是函数集,最好的函数也只能从模型中选取
    简单模型:空间比较小,可能没包含目标函数,所以无论怎么选,都选不到目标 bais大
    复杂模型:空间很大,包含了目标函数,但是太多函数,可能找不到目标 variance大
  • 如果模型没办法fit训练样本,代表bias大,underfitting了
    如果训练误差很小,测试误差很大,代表variance大,overfitting了

机器学习笔记_李宏毅_P5-P7_Gradient Descent

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
李宏毅的2020机器学习笔记中,有一个关于注意力机制(Attention)的部分。这部分内容主要介绍了生成模型(Generation)、注意力(Attention)、生成的技巧(Tips for Generation)以及指针网络(Pointer Network)。在生成模型中,主要讲述了如何生成一个有结构的对象。接下来介绍了注意力机制,包括一些有趣的技术,比如图片生成句子等。在生成的技巧部分,提到了一些新的技术以及可能遇到的问题和偏差,并给出了相应的解决方案。最后,稍微提到了强化学习。其中还提到了在输出"machine"这个单词时,只需要关注"机器"这个部分,而不必考虑输入中的"学习"这个部分。这样可以得到更好的结果。另外,还提到了关于产生"ei"的方法,其中有研究应用了连续动态模型自注意力(Self-attention)来学习位置编码的方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [2020李宏毅机器学习笔记-Condition Generation by RNN&Attention](https://blog.csdn.net/zn961018/article/details/117593813)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [李宏毅机器学习学习笔记:Self-attention](https://blog.csdn.net/weixin_44455827/article/details/128094176)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值