题意:给定每条街的拥挤度p(x),街a到街b的时间就是(p(b)-p(a))^3,求第一个点到第k个点的最短路,若无法到达或结果小于3,输出’?’。
明显题目中存在负环,所以要用spfa判负环,然后与负环有关的点(标记)都要输出?,因为都会<3.
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <stack>
#include <queue>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn = 205;
int n = maxn, m, s, t; //n为点数 s为源点
int head[maxn]; //head[from]表示以head为出发点的邻接表表头在数组es中的位置,开始时所有元素初始化为-1
int d[maxn]; //储存到源节点的距离,在Spfa()中初始化
int cnt[maxn];
bool inq[maxn]; //这里inq作inqueue解释会更好,出于习惯使用了inq来命名,在Spfa()中初始化
int nodep; //在邻接表和指向表头的head数组中定位用的记录指针,开始时初始化为0
int pre[maxn];
int r[maxn];
struct node {
int v, w, next;
}es[maxn * maxn];
void init() {
for(int i = 0; i <= n; i++) {
d[i] = inf;
inq[i] = false;
cnt[i] = 0;
head[i] = -1;
pre[i] = -1;
r[i] = 0;
}
nodep = 0;
}
void addedge(int from, int to, int weight)
{
es[nodep].v = to;
es[nodep].w = weight;
es[nodep].next = head[from];
head[from] = nodep++;
}
void dfs(int x)
{
r[x] = 1;
for(int i = head[x]; i != -1; i=es[i].next)
if(!r[es[i].v])
dfs(es[i].v);
}
bool spfa()
{
queue<int> que;
d[s] = 0; //s为源点
inq[s] = 1;
que.push(s);
while(!que.empty()) {
int u = que.front();
que.pop();
inq[u] = false; //从queue中退出
//遍历邻接表
for(int i = head[u]; i != -1; i = es[i].next) { //在es中,相同from出发指向的顶点为从head[from]开始的一项,逐项使用next寻找下去,直到找到第一个被输
//入的项,其next值为-1
int v = es[i].v;
if(r[v]) continue;
if(d[v] > d[u] + es[i].w) { //松弛(RELAX)操作
d[v] = d[u] + es[i].w;
//pre[v] = u;
if(!inq[v]) { //若被搜索到的节点不在队列que中,则把to加入到队列中去
inq[v] = true;
que.push(v);
if(++cnt[v] > n) {
dfs(v);
}
}
}
}
}
return true;
}
void putpath() {
stack<int> path;
int now = t;
while(1) {
path.push(now);
if(now == s) {
break;
}
now = pre[now];
}
while(!path.empty()) {
now = path.top();
path.pop();
printf("%d\n", now);
}
}
int p[maxn];
int main()
{
int T, kcase = 0;
cin >> T;
while(T--) {
printf("Case %d:\n", ++kcase);
cin >> n;
for(int i = 1; i <= n; i++) {
cin >> p[i];
}
cin >> m;
int a, b;
init();
while(m--) {
cin >> a >> b;
int k = p[b] - p[a];
addedge(a, b, k * k * k);
}
s = 1;
if(spfa()) {}
cin >> m;
while(m--) {
cin >> t;
if(!r[t] && d[t] != inf && d[t] >= 3) {
cout << d[t] << endl;
}
else
puts("?");
}
}
return 0;
}