LightOJ - 1074 spfa判负环+标记负环点

题意:给定每条街的拥挤度p(x),街a到街b的时间就是(p(b)-p(a))^3,求第一个点到第k个点的最短路,若无法到达或结果小于3,输出’?’。

明显题目中存在负环,所以要用spfa判负环,然后与负环有关的点(标记)都要输出?,因为都会<3.

链接:LightOJ - 1074

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <stack>
#include <queue>
#define inf 0x3f3f3f3f

using namespace std;

const int maxn = 205;

int n = maxn, m, s, t;   //n为点数 s为源点
int head[maxn]; //head[from]表示以head为出发点的邻接表表头在数组es中的位置,开始时所有元素初始化为-1
int d[maxn]; //储存到源节点的距离,在Spfa()中初始化
int cnt[maxn];
bool inq[maxn]; //这里inq作inqueue解释会更好,出于习惯使用了inq来命名,在Spfa()中初始化
int nodep;  //在邻接表和指向表头的head数组中定位用的记录指针,开始时初始化为0
int pre[maxn];
int r[maxn];

struct node {
    int v, w, next;
}es[maxn * maxn];

void init() {
    for(int i = 0; i <= n; i++) {
        d[i] = inf;
        inq[i] = false;
        cnt[i] = 0;
        head[i] = -1;
        pre[i] = -1;
        r[i] = 0;
    }
    nodep = 0;
}

void addedge(int from, int to, int weight)
{
    es[nodep].v = to;
    es[nodep].w = weight;
    es[nodep].next = head[from];
    head[from] = nodep++;
}

void dfs(int x)
{
    r[x] = 1;
    for(int i = head[x]; i != -1; i=es[i].next)
        if(!r[es[i].v])
            dfs(es[i].v);
}

bool spfa()
{
    queue<int> que;
    d[s] = 0;    //s为源点
    inq[s] = 1;
    que.push(s);
    while(!que.empty()) {
        int u = que.front();
        que.pop();
        inq[u] = false;   //从queue中退出
        //遍历邻接表
        for(int i = head[u]; i != -1; i = es[i].next) {  //在es中,相同from出发指向的顶点为从head[from]开始的一项,逐项使用next寻找下去,直到找到第一个被输
                                                        //入的项,其next值为-1
            int v = es[i].v;
            if(r[v]) continue;
            if(d[v] > d[u] + es[i].w) { //松弛(RELAX)操作
                d[v] = d[u] + es[i].w;
                //pre[v] = u;
                if(!inq[v]) {      //若被搜索到的节点不在队列que中,则把to加入到队列中去
                    inq[v] = true;
                    que.push(v);
                    if(++cnt[v] > n) {
                        dfs(v);
                    }
                }
            }
        }
    }
    return true;
}

void putpath() {
    stack<int> path;
    int now = t;
    while(1) {
        path.push(now);
        if(now == s) {
            break;
        }
        now = pre[now];
    }
    while(!path.empty()) {
        now = path.top();
        path.pop();
        printf("%d\n", now);
    }
}

int p[maxn];

int main()
{
    int T, kcase = 0;
    cin >> T;
    while(T--) {
        printf("Case %d:\n", ++kcase);
        cin >> n;
        for(int i = 1; i <= n; i++) {
            cin >> p[i];
        }
        cin >> m;
        int a, b;
        init();
        while(m--) {
            cin >> a >> b;
            int k = p[b] - p[a];
            addedge(a, b, k * k * k);
        }
        s = 1;
        if(spfa()) {}
        cin >> m;
        while(m--) {
            cin >> t;
            if(!r[t] && d[t] != inf && d[t] >= 3) {
                cout << d[t] << endl;
            }
            else
                puts("?");
        }
    }
    return 0;
}

阅读更多
个人分类: 最短路
上一篇poj - 1062 spfa+枚举区间
下一篇hdu - 4725 最短路+拆点建图 dijkstra或spfa
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭