题意:给一个无根树,有q个询问,每个询问两个点,问两点的距离。
求出lca = LCA(u, v) 结果为dir[u] + dir[v] - dir[lca] * 2
链接:hdu 2586
1、 DFS + ST在线算法模板1
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <stack>
#include <queue>
using namespace std;
const int maxn = 50010;
const int maxm = 1000050;
const int inf = 0x7f7f7f7f;
int rmq[2 * maxn]; // rmq数组,就是欧拉序列对应的深度序列
struct ST
{
int mm[2 * maxn];
int dp[2 * maxn][25]; // 最小值对应的下标
void init(int n) {
mm[0] = -1;
for (int i = 1; i <= n; i++) {
mm[i] = ((i & (i - 1)) == 0) ? mm[i - 1] + 1 : mm[i - 1];
dp[i][0] = i;
}
for (int j = 1; j <= mm[n]; j++) {
for (int i = 1; i + (1 << j) - 1 <= n; i++) {
dp[i][j] = rmq[dp[i][j - 1]] < rmq[dp[i + (1 << (j - 1))][j - 1]] ? dp[i][j - 1] : dp[i + (1 << (j - 1))][j - 1];
}
}
}
int query(int a, int b) { // 查询[a,b]之间最小值的下标
if (a > b) {
swap(a, b);
}
int k = mm[b - a + 1];
return rmq[dp[a][k]] <= rmq[dp[b - (1 << k) + 1][k]] ? dp[a][k] : dp[b - (1 << k) + 1][k];
}
};
// 边的结构体定义
struct Edge {
int to, next;
int w;
}edge[maxn * 2];
int tot, head[maxn];
int F[maxn * 2]; // 欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[maxn]; // P[i]表示点i在F中第一次出现的位置
int dir[maxn];
int cnt;
ST st;
bool vis[maxn];
void init()
{
tot = 0;
memset(head, -1, sizeof(head));
memset(vis, 0, sizeof(vis));
}
void addedge(int u, int v, int w) // 加边,无向边需要加两次
{
edge[tot].to = v;
edge[tot].w = w;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u, int dep)
{
vis[u] = true;
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for (int i = head[u]; i != -1; i = edge[i].next) {
int v = edge[i].to;
if (vis[v]) {
continue;
}
dir[v] = dir[u] + edge[i].w;
dfs(v, dep + 1);
F[++cnt] = u;
rmq[cnt] = dep;
}
}
void LCA_init(int root, int node_num) // 查询LCA前的初始化
{
cnt = 0;
dfs(root, 0);
st.init(2 * node_num - 1);
}
int query_lca(int u, int v) // 查询u,v的lca编号
{
return F[st.query(P[u], P[v])];
}
bool flag[maxn];
int main()
{
int T;
int n, m;
int u, v, w;
scanf("%d", &T);
while(T--) {
scanf("%d %d", &n, &m);
init();
memset(flag, false, sizeof(flag));
for (int i = 1; i < n; i++) {
scanf("%d %d %d", &u, &v, &w);
addedge(u, v, w);
addedge(v, u, w);
flag[v] = true;
}
int root;
for (int i = 1; i <= n; i++) {
if (!flag[i]) {
root = i;
break;
}
}
dir[root] = 0;
LCA_init(root, n);
while(m--) {
scanf("%d %d", &u, &v);
int lca = query_lca(u, v);
printf("%d\n", dir[u] + dir[v] - dir[lca] * 2);
}
}
return 0;
}
DFS + ST在线算法模板2
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <math.h>
using namespace std;
const int maxn = 40010;
const int maxm = 25;
int _pow[maxm], m, n;
int head[maxn], ip;
int ver[maxn*2], R[maxn*2], first[maxn], dir[maxn], dp[maxn*2][maxm], tot;
bool vis[maxn];
void init()
{
memset(vis, false, sizeof(vis));
memset(head, -1, sizeof(head));
ip = 0;
}
struct node {
int v, w, next;
}edge[maxn*2];
void addedge(int u, int v, int w)
{
edge[ip].v = v, edge[ip].w = w, edge[ip].next = head[u], head[u] = ip++;
}
void dfs(int u, int dep)
{
vis[u] = true;
ver[++tot] = u, first[u] = tot, R[tot] = dep;
for(int i = head[u]; i != -1; i = edge[i].next) {
int v = edge[i].v;
int w = edge[i].w;
if(!vis[v]) {
dir[v] = dir[u] + w;
dfs(v, dep + 1);
ver[++tot] = u, R[tot] = dep;
}
}
}
void ST(int len)
{
int k = (int)log((double)len) / (log(2.0));
for(int i = 1; i <= len; i++) {
dp[i][0] = i;
}
for(int j = 1; j <= k; j++) {
for(int i = 1; i + _pow[j] - 1 <= len; i++) {
int a = dp[i][j-1], b = dp[i + _pow[j - 1]][j - 1];
if(R[a] < R[b])
dp[i][j] = a;
else
dp[i][j] = b;
}
}
}
int RMQ(int x, int y)
{
int k = (int)log((double)(y - x + 1) / log(2.0));
int a = dp[x][k], b = dp[y - _pow[k] + 1][k];
if(R[a] < R[b])
return a;
else
return b;
}
int LCA(int u, int v)
{
int x = first[u], y = first[v];
if(x > y) swap(x, y);
int res = RMQ(x, y);
return ver[res];
}
int main()
{
for(int i = 0; i < maxn; i++) _pow[i] = (1 << i);
int T;
scanf("%d", &T);
while(T--) {
scanf("%d %d", &n, &m);
init();
for(int i = 1; i < n; i++) {
int u, v, w;
scanf("%d %d %d", &u, &v, &w);
addedge(u, v, w);
addedge(v, u, w);
}
tot = 0, dir[1] = 0;
dfs(1, 1);
ST(2 * n - 1);
while(m--) {
int u, v;
scanf("%d %d", &u, &v);
int lca = LCA(u, v);
printf("%d\n", dir[u] + dir[v] - 2 * dir[lca]);
}
}
return 0;
}
2、Tarjan离线算法模板
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <stack>
#include <queue>
using namespace std;
const int maxn = 50010;
const int maxm = 1010; // 查询数的最大值
const int inf = 0x7f7f7f7f;
int F[maxn]; // 需要初始化为-1
int dir[maxn];
bool vis[maxn]; // 访问标记
int ancestor[maxn]; // 祖先
struct Edge{
int to, next;
int w;
} edge[maxn * 2];
int head[maxn], tot;
struct edge {
int u;
int v, next;
int lca; // 查询编号
} edge1[maxn * 2];
int head1[maxn], tt;
int Find(int x)
{
if (F[x] == -1) {
return x;
}
return F[x] = Find(F[x]);
}
void unions(int u, int v)
{
int t1 = Find(u);
int t2 = Find(v);
if (t1 != t2) {
F[t2] = t1;
}
}
void init()
{
tot = 0;
memset(head, -1, sizeof(head));
tt = 0;
memset(head1, -1, sizeof(head1));
memset(vis, false, sizeof(vis));
memset(F, -1, sizeof(F));
memset(ancestor, 0, sizeof(ancestor));
memset(dir,0,sizeof(dir));
}
void addedge(int u, int v, int w)
{
edge[tot].to = v;
edge[tot].next = head[u];
edge[tot].w = w;
head[u] = tot++;
}
void add_edge1(int u, int v)
{
edge1[tt].u = u;
edge1[tt].v = v;
edge1[tt].next = head1[u];
edge1[tt].lca = -1;
head1[u] = tt++;
edge1[tt].u = v;
edge1[tt].v = u;
edge1[tt].next = head1[v];
edge1[tt].lca = -1;
head1[v] = tt++;
}
void tarjan(int u)
{
ancestor[u] = u;
vis[u] = true;
for (int i = head[u]; i != -1; i = edge[i].next) {
int v = edge[i].to;
if (vis[v]) {
continue;
}
dir[v] = dir[u] + edge[i].w;
tarjan(v);
unions(u, v);
}
for (int i = head1[u]; i != -1; i = edge1[i].next) {
int v = edge1[i].v;
if (vis[v]) {
edge1[i].lca = edge1[i ^ 1].lca = ancestor[Find(v)];
}
}
}
int main()
{
int n, m;
int u, v, k, w;
int t;
scanf("%d", &t);
while (t--) {
scanf("%d %d", &n, &m);
init();
for (int i = 1; i < n; i++) {
scanf("%d %d %d", &u, &v, &w);
addedge(u, v, w);
addedge(v, u, w);
}
for (int i = 0; i < m; i++) {
scanf("%d %d", &u, &v);
add_edge1(u, v);
}
dir[1] = 0;
tarjan(1);
for(int i = 0; i < m; i++) {
int s = i * 2;
u = edge1[s].u;
v = edge1[s].v;
int lca = edge1[s].lca;
printf("%d\n", dir[u] + dir[v] - 2 * dir[lca]);
}
}
return 0;
}