【题目描述】
信息学院的同学小明毕业之后打算创业开餐馆.现在共有n
个地点可供选择。小明打算从中选择合适的位置开设一些餐馆。这 n个地点排列在同一条直线上。我们用一个整数序列m1,m2,...mn来表示他们的相对位置。由于地段关系,开餐馆的利润会有所不同。我们用pi 表示在mi处开餐馆的利润。为了避免自己的餐馆的内部竞争,餐馆之间的距离必须大于k
。请你帮助小明选择一个总利润最大的方案。
【输入】
输入第一行是整数 T(1≤T≤1000)
,表明有T组测试数据。紧接着有T组连续的测试。每组测试数据有3
行。
第1行:地点总数n(n<100)
, 距离限制k(k>0且k<1000)
;
第2行:n 个地点的位置m1,m2,...mn(1000000>mi>0
且为整数,升序排列);
第3行:n 个地点的餐馆利润p1,p2,...pn(1000>pi>0
且为整数)。
【输出】
对于每组测试数据可能的最大利润。
【输入样例】
2
3 11
1 2 15
10 2 30
3 16
1 2 15
10 2 30
【输出样例】
40
30
状态方程:dp[i]=max(dp[i],dp[j]+profit[i])//dp[i]表示前i个地点开餐馆的最大利润
// Created on 2020/2/20
/*#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <climits>*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int idata=1000+5;
const int inf=0x3f3f3f3f;
int n,m,t;
int minn=INT_MAX,maxx=INT_MIN;
ll sumfee[idata];
int maps[idata],profit[idata];
int seat[idata];
int i,v,j,k;
inline void initial()
{
for(i=1;i<=n;i++)
cin>>maps[i];
for(i=1;i<=n;i++)
{
cin>>profit[i];
sumfee[i]=profit[i];
}
maxx=-inf;
return ;
}
int main()
{
cin>>t;
while(t--)
{
cin>>n>>m;
initial();
for(i=2;i<=n;i++)
{
for(j=1;j<i;j++)
{
if(maps[i]-maps[j]>m)
sumfee[i]=max(sumfee[i],sumfee[j]+profit[i]);
}
}
for(i=1;i<=n;i++)
{
if(maxx<sumfee[i])
maxx=sumfee[i];
}
cout<<maxx<<endl;
}
return 0;
}
// Created on 2020/2/20
/*#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <climits>*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int idata=1000+5;
const int inf=0x3f3f3f3f;
int n,m,t;
int minn=INT_MAX,maxx=INT_MIN;
ll sumfee[idata];
int maps[idata],profit[idata];
int i,v,j,k;
inline void initial()
{
for(i=1;i<=n;i++)
cin>>maps[i];
for(i=1;i<=n;i++)
{
cin>>profit[i];
}
memset(sumfee,0,sizeof(sumfee));
maxx=-inf;
return ;
}
int main()
{
cin>>t;
while(t--)
{
cin>>n>>m;
initial();
for(i=1;i<=n;i++)
{
for(j=1;j<i;j++)
{
if(maps[i]-maps[j]>m&&sumfee[j]>sumfee[i])
sumfee[i]=sumfee[j];
}
sumfee[i]+=profit[i];
}
for(i=1;i<=n;i++)
{
if(maxx<sumfee[i])
maxx=sumfee[i];
}
cout<<maxx<<endl;
}
return 0;
}