一般来说,插入排序都采用in-place在数组上实现。
具体算法描述如下:
- 从第一个元素开始,该元素可以认为已经被排序。
- 取出下一个元素,在已经排序的元素序列中从后向前扫描;
- 如果该元素(已排序)大于新元素,将该元素移到下一位置;
- 重复步骤3,直到找到已经排序的元素小于或者等于新元素的位置;
- 将新元素插入到该位置后;
- 重复步骤2-5;
eg:
代码如下:直接插入排序:
public static void insertSort(int[] array){
long start = System.currentTimeMillis();
int n = array.length;
if(n <= 1){
return;
}else{
for(int i = 1;i < n;i++){
int value = array[i];
int j = i - 1;
for(;j >= 0;j--){
if(array[j] > value){
//搬移元素
array[j+1] = array[j];
}else{
break;
}
//已找到插入位置
}
array[j+1] = value;
}
}
评判算法的三个经典问题:
- 插入排序是一个原地排序算法:从实现过程可以看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度为O(1);也就是说,这是一个原地排序算法。
- 插入排序是稳定的算法:在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。
- 插入排序的时间复杂度分析:
如果要排序的数据已经是有序的,并不需要搬移数据从头到尾在有序数据组里面找插入位置,每次只需要比较一个数据就能确定插入的位置。在这种情况下,最好的时间复杂度为:O(n);
如果数组是倒序的,每次插入就相当于在数组的第一个位置插入新的数据,所有需要移动大量的数据,最坏情况的时间复杂度为:O(n^2);
对于插入排序来说,每次插入操作都相当于在数组中插入一个数据,循环执行n次插入操作,所以平均时间复杂度为O(n^2);
直接排序与冒泡排序的比较:
冒泡排序和插入排序的时间复杂度都是O(n^2),都是原地排序算法;
比较俩段代码:
//冒泡排序中数据的交换操作
if (a[j] > a[j+1]) {
//交换
int tmp = a[j];
a[j] = a[j+1];
a[j+1] = tmp;
flag = true;
}
}
//插入排序中数据的移动操作
if (a[j] > value) {
//数据移动
a[j+1] = a[j];
}
else {
break;
}
将执行一个赋值语句的时间粗略的记为单位时间,然后分别用冒泡排序和插入排序对一个逆序度为k的数组进行排序;用冒泡排序需要k次交换操作,每次需要3个赋值语句,则交换总耗时是3*k单位时间;而插入排序中数据移动操作只需要k个单位时间。