数据结构之直接插入排序(算法思想,复杂度分析)以及冒泡排序和直接插入排序的比较

一般来说,插入排序都采用in-place在数组上实现。

具体算法描述如下:

  1. 从第一个元素开始,该元素可以认为已经被排序。
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  4. 重复步骤3,直到找到已经排序的元素小于或者等于新元素的位置;
  5. 将新元素插入到该位置后;
  6. 重复步骤2-5;
    eg:
    在这里插入图片描述

代码如下:直接插入排序:

public static void insertSort(int[] array){
    long start = System.currentTimeMillis();
    int n = array.length;
    if(n <= 1){
        return;
    }else{
        for(int i = 1;i < n;i++){
            int value = array[i];
            int j = i - 1;
            for(;j >= 0;j--){
                if(array[j] > value){
                    //搬移元素
                    array[j+1] = array[j];
                }else{
                    break;
                }
                //已找到插入位置
            }
            array[j+1] = value;
        }
    }

评判算法的三个经典问题:

  1. 插入排序是一个原地排序算法:从实现过程可以看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度为O(1);也就是说,这是一个原地排序算法。
  2. 插入排序是稳定的算法:在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。
  3. 插入排序的时间复杂度分析:

如果要排序的数据已经是有序的,并不需要搬移数据从头到尾在有序数据组里面找插入位置,每次只需要比较一个数据就能确定插入的位置。在这种情况下,最好的时间复杂度为:O(n)

如果数组是倒序的,每次插入就相当于在数组的第一个位置插入新的数据,所有需要移动大量的数据,最坏情况的时间复杂度为:O(n^2)

对于插入排序来说,每次插入操作都相当于在数组中插入一个数据,循环执行n次插入操作,所以平均时间复杂度为O(n^2)

直接排序与冒泡排序的比较:

冒泡排序和插入排序的时间复杂度都是O(n^2),都是原地排序算法;

比较俩段代码:

//冒泡排序中数据的交换操作
if (a[j] > a[j+1]) {
//交换
      int tmp = a[j]; 
      a[j] = a[j+1];  
      a[j+1] = tmp;  
      flag = true; 
    }
}

//插入排序中数据的移动操作
if (a[j] > value) { 
//数据移动
    a[j+1] = a[j]; 
    } 
    else { 
    break;
}

将执行一个赋值语句的时间粗略的记为单位时间,然后分别用冒泡排序和插入排序对一个逆序度为k的数组进行排序;用冒泡排序需要k次交换操作,每次需要3个赋值语句,则交换总耗时是3*k单位时间;而插入排序中数据移动操作只需要k个单位时间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值