130 被围绕的区域
给你一个 m x n 的矩阵 board ,由若干字符 ‘X’ 和 ‘O’ ,找到所有被 ‘X’ 围绕的区域,并将这些区域里所有的 ‘O’ 用 ‘X’ 填充。
示例 1:
输入:board = [[“X”,“X”,“X”,“X”],[“X”,“O”,“O”,“X”],[“X”,“X”,“O”,“X”],[“X”,“O”,“X”,“X”]]
输出:[[“X”,“X”,“X”,“X”],[“X”,“X”,“X”,“X”],[“X”,“X”,“X”,“X”],[“X”,“O”,“X”,“X”]]
解释:被围绕的区间不会存在于边界上,换句话说,任何边界上的 ‘O’ 都不会被填充为 ‘X’。 任何不在边界上,或不与边界上的 ‘O’ 相连的 ‘O’ 最终都会被填充为 ‘X’。如果两个元素在水平或垂直方向相邻,则称它们是“相连”的。
示例 2:
输入:board = [[“X”]]
输出:[[“X”]]
提示:
m == board.length
n == board[i].length
1 <= m, n <= 200
board[i][j] 为 ‘X’ 或 ‘O’
思路(来自力扣官方题解)
采用BFS。
这题容易陷入固定思维,直接去遍历O元素再把不符合条件的O元素删除。但是由于题目要求将被X包围的O全部换成X,很难判断哪些是被X包围的O,哪些是不被包围的。
根据题中信息提示:任何边界上的 O 都不会被填充为 X。
所以可以从边界上O向周围遍历搜索与之相关联的O点,标记为A。这样最后完整遍历board,只要将A还原成O,原来是O的变成X就可以了。
代码
class Solution {
public:
struct node {
int x, y;
} Node;
int X[4] = {0, 0, 1, -1};
int Y[4] = {1, -1, 0, 0};
void solve(vector<vector<char>>& board) {
int m = board.size(); // 行数
int n = board[0].size(); // 列数
// 对于边界上的O,以它为起点标记所有与之直接或间接相连的字母O
// 把标记过的字母修改成A,标记过表示没有被X包围的O
// 未标记表示是被X包围的O
queue<node> q;
for (int x = 0; x < m; x++) {
if (board[x][0] == 'O') {
Node.x = x, Node.y = 0;
q.push(Node);
board[x][0] = 'A';
}
if (board[x][n - 1] == 'O') {
Node.x = x, Node.y = n - 1;
q.push(Node);
board[x][n - 1] = 'A';
}
}
for (int y = 1; y < n - 1; y++) {
if (board[0][y] == 'O') {
Node.x = 0, Node.y = y;
q.push(Node);
board[0][y] = 'A';
}
if (board[m - 1][y] == 'O') {
Node.x = m - 1, Node.y = y;
q.push(Node);
board[m - 1][y] = 'A';
}
}
// 去搜索那些与边界相关联的O点,标记为A
while (!q.empty()) {
node top = q.front();
q.pop();
for (int i = 0; i < 4; i++) {
int newX = top.x + X[i];
int newY = top.y + Y[i];
if (newX < 0 || newX >= m || newY < 0 || newY >= n ||
board[newX][newY] != 'O') {
continue;
}
Node.x = newX;
Node.y = newY;
q.push(Node);
board[newX][newY] = 'A';
}
}
// 把标记为A的还原为O点,标记为O的变为X
for (int x = 0; x < m; x++) {
for (int y = 0; y < n; y++) {
if (board[x][y] == 'A') {
board[x][y] = 'O';
} else if (board[x][y] == 'O') {
board[x][y] = 'X';
}
}
}
}
};