原文地址
题意:
给两个骰子,每枚骰子每个面由红(red),蓝(blue),绿(green)三种颜色之一染色,可以把每枚骰子按照图示方式编号,然后按照编号给出颜色顺序,问这两枚骰子能否通过旋转变成展示的颜色相对位置一致?
思路:
可以将一枚骰子的颜色顺序不变,将另一枚旋转,看旋转过程中是否有颜色完全重合的情况。
旋转时,每个面都可以在编号1的位置,这有6种选择,而当编号1位置的面确定了,那么编号6位置的面也就随之确定了。剩下的只需将编号1和编号6之间的四个竖着的面旋转,依次比较看是否有完全重合的情况,这时有4种情况,所以一共是24种选择。
那么难点就是如何枚举。以123456为例看一下它的剩余三种情况是怎样的。很容易得到:135246,15432,142536.
可以看到从第二种情况开始,每种情况的
第二个位置的数字由上一种情况的第三个位置数字得到,
第三个位置的数字由上一种情况的第五个位置数字得到,
第五个位置的数字由上一种情况的第四个位置数字得到,
第四个位置的数字由上一种情况的第二个位置数字得到。
那么只需要确定6个面每个面在最顶面的一种情况,则这个面在最顶面的其余情况就可得了。(枚举)
用一个二维数组记录六个面每个面在最顶面的一种情况,而后枚举时,用相应循环的i,j调用初始情况,再在这种顶面确定时,枚举四种情况。当然也可以先比较然后枚举三种情况比较,这样也是将所有情况都枚举完了。
难点:
①当顶面和底面确定时,绕竖直轴旋转时,各个面是如何变化的。
②第一层次的6种情况如何表示。
#include <stdio.h>
#include <string.h>
char s[15], s1[7], s2[7], s3[7];
int flag;
int d[7][7] = { {0,1,2,3,4,5},{1,5,2,3,0,4},{2,1,5,0,4,3}, {3,1,0,5,4,2},{4,0,2,3,5,1},{5,4,2,3,1,0} };
int main()
{
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
while (~scanf("%s", s))
{
flag = 0; // 判断两次顺序
for (int i = 0;i < 12;i++)
{
if (i < 6) s1[i] = s[i]; // s1 s2保存的两次顺序
else s2[i-6] = s[i];
}
s1[6] = '\0';
s2[6] = '\0'; // "封底"
//puts(s1);
//puts(s2);
for (int i = 0;i < 6;i++) // 以 1-6分别为底
{
for (int j = 0;j < 6;j++) // s3为对应的正方体s1下各个底的首次排序序列
s3[j] = s1[d[i][j]];
s3[6] = '\0';
//puts(s3);
if (strcmp(s3, s2) == 0) // 比较两个次序
{
flag = 1;
break;
}
for (int j = 0;j < 3;j++) //这时首尾颜色不变,只变化中间四种颜色(剩余的三种排序序列)
{
char ch = s3[1]; // 中间四色调换
s3[1] = s3[2];
s3[2] = s3[4];
s3[4] = s3[3];
s3[3] = ch;
//puts(s3);
if (strcmp(s3, s2) == 0) // 比较两个次序
{
flag = 1;
break;
}
}
if (flag) break; // 匹配成功,跳出循环
}
if (flag) printf("TRUE\n"); // 匹配成功
else printf("FALSE\n"); // 失败
}
return 0;
}