深度学习中 过拟合的应对策略

深度学习中常常会遇到模型过拟合的问题,这里简单总结一下过拟合的应对策略。

过拟合的原因及表现

过拟合的原因简单来说,就是模型的拟合能力远远高于需要解决的问题的复杂度,这就导致了在拟合出训练集数据正确规则的情况下,又拟合了噪声。表现为测试集的预测误差远远大于训练集的预测误差。(偏差小,方差大)

应对策略

更多的数据

原因: 让模型看到更多的数据,能够拟合更多的可能,测试集出现例外情况的概率就会更小。
方法: Data Augmentation:平移,缩放,裁剪,旋转…具体情况具体扩充。

调整网络结构

原因: 对于需要解决的问题来说,所用模型可能太复杂。
方法: backbone换起来~

early stopping

原因: 模型训练时间越长,对数据的拟合能力越强。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值