2017山东省赛A题(SDUT3893威佐夫博弈+尼姆博奕)

题意:
G组数据(g<15)
每组数据有n堆石子(n是质数)
接下来是n堆石子数(1≤pilesi≤10^5)
取法:选择一堆取k个,每堆石子取k个

n==2是
是威佐夫博弈
威佐夫博弈
n>2时,第一种取法是典型的nim博弈,而第二种会产生什么影响呢
举个例子:
有3堆石子,分别是15,6,9 然后转换为二进制形式
1 1 1 1
0 1 1 0
1 0 0 1
此时为P态,进行普通Nim操作肯定会破会P态转移到N态,所以此时不会选取这种操作,那么只能尝试对每堆进行取任意满足条件的k个石子,发现不管怎么取完之后P态也必定会被破坏。原因是,假如对每堆取K个它们二进制最小的位代表的个数个,则取完之后此位的二进制值都会被取反,所以破坏了P态,而且题目的要求是素数个堆(除2外都是奇数),对其他满足条件的二进制位进行取也是如此。所以当n>2时,对P态进行取同k个操作只会破坏P态,而不会得到想要的P态->P态,而当为N态时,只需进行普通的Nim操作就可使N态转化为P态,故加入同取k个操作之后也是满足普通Nim堆的。
所以当n>2时,同时取k个石子对nim没有影响,即可以把这个游戏看作尼姆游戏.
code:

//威佐夫博弈+尼姆博奕
#include<cstdio>
#include<math.h>
int main()
{
    int kase;
    scanf("%d",&kase);
    while(kase--)
    {
        int n;
        scanf("%d",&n);
        if(n==2)
        {
            int a,b,c;
            scanf("%d%d",&a,&b);
            if(a>b)
            {
                c=a;
                a=b;
                b=c;
            }
            c=b-a;
            int w=(int )(((sqrt(5.0)+1.0)/2.0)*c);
            if(w==a)
                printf("Watson\n");
            else
                printf("Sherlock\n");
        }
        else{
            int res=0;
            for(int i=0;i<n;i++)
            {
                int a;
                scanf("%d",&a);
                res^=a;
            }
            if(res==0)
                printf("Watson\n");
            else
                printf("Sherlock\n");
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值