莫比乌斯反演定理推导


F(n)=d|nf(d)

求证:
f(n)=d|nμ(d)F(nd)

(d|n代表d是n的因数)
其中 μ(d) 为莫比乌斯函数,定义如下:
(1)若 d=1 μ(d)=1 ;
(2)若 d=p1p2...pk,pi 为互异素数,那么 μ(d)=(1)k
(3)其它情况下 μ(d)=0

求证之前先证明 μ(d) 的一个性质
对于任意正整数n有:

d|nμ(d)={1,0,n=1n>1

证明:
①当n=1时,显然成立
②当 n1,nn=pa11pa22pa33...pakk
n 的所有因子中,μ值不为零的只有所有质因子次数都为1的因,其中质因数个数为 r 个的因子有Crk个,那么:
d|nμ(d)=C0kC1k+C2k...(1)kCkk=i=1k(1)iCik

有二项式定理
(x+y)k=i=1kCikxiyki

x=1,y=1 带入期中,可得
0=i=1k(1)iCik

证得:
d|nμ(d)={1,0,n=1n>1

莫比乌斯反演定理推导

d|nμ(d)F(nd)=d|nμ(d)k|ndf(k)

d|nμ(d)k|ndf(k)=d|nf(k)d|nkμ(d)

我认为②最难理解了,可以这样理解,两重for循环求解 f(k)μ(d)
交换循环上限不影响结果.
因为k是 nd 的因子,所以存在一个整数p使 pkd=n ,所以枚举 nd nk 效果是一样的;
在②中,对于
d|nkμ(d)
当且仅当 nk=1 时,
d|nkμ(d)=1

所以:
d|nf(k)d|nkμ(d)=f(n)

所以:
d|nμ(d)F(nd)=f(n)

证毕.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值