已知
F(n)=∑d|nf(d)
求证:
f(n)=∑d|nμ(d)F(nd)
(d|n代表d是n的因数)
其中 μ(d) 为莫比乌斯函数,定义如下:
(1)若 d=1 则 μ(d)=1 ;
(2)若 d=p1p2...pk,pi 为互异素数,那么 μ(d)=(−1)k
(3)其它情况下 μ(d)=0
求证之前先证明
μ(d)
的一个性质
对于任意正整数n有:
∑d|nμ(d)={1,0,n=1n>1
证明:
①当n=1时,显然成立
②当 n≠1时,将n分解为n=pa11pa22pa33...pakk
在 n 的所有因子中,
∑d|nμ(d)=C0k−C1k+C2k...(−1)kCkk=∑i=1k(−1)iCik
有二项式定理
(x+y)k=∑i=1kCikxiyk−i
将 x=−1,y=1 带入期中,可得
0=∑i=1k(−1)iCik
证得:
∑d|nμ(d)={1,0,n=1n>1②
莫比乌斯反演定理推导
∑d|nμ(d)F(nd)=∑d|nμ(d)∑k|ndf(k)
∑d|nμ(d)∑k|ndf(k)=∑d|nf(k)∑d|nkμ(d)②
我认为②最难理解了,可以这样理解,两重for循环求解 f(k)∗μ(d)
交换循环上限不影响结果.
因为k是 nd 的因子,所以存在一个整数p使 p∗k∗d=n ,所以枚举 nd 和 nk 效果是一样的;
在②中,对于
∑d|nkμ(d)
当且仅当
nk=1
时,
∑d|nkμ(d)=1
所以:
∑d|nf(k)∑d|nkμ(d)=f(n)
所以:
∑d|nμ(d)F(nd)=f(n)
证毕.