莫比乌斯反演的证明(非狄利克雷卷积法)

首先给大家介绍一下莫比乌斯函数吧,其实这个函数挺好理解的,只是一个容斥系数
μ(d)的定义是:
当d=1时,μ(d)=1;
当d=Πki=1pi且pi为互异素数时,μ(d)=(−1)k。(说直白点,就是d分解质因数后,没有幂次大于平方的质因子,此时函数值根据分解的个数决定);
只要当d含有任何质因子的幂次大于等于2,则函数值为0.

莫比乌斯函数的性质

1、对于任意正整数n,∑d|nμ(d)=[n=1]。([n=1]表示只有当n=1成立时,返回值为1;否则,值为0;(这个就是用μ是容斥系数的性质可以证明)(PS:这一条性质是莫比乌斯反演中最常用的)
2、对于任意正整数n,∑d|nμ(d)d=ϕ(n)n。(这个性质很奇妙,它把欧拉函数和莫比乌斯函数结合起来)

介绍完性质现在再来介绍一下那个莫比乌斯函数的公式
定理:F(n)和f(n)是定义在非负整数集合上的两个函数,并且满足条件:
F(n)=∑d|nf(d)
那么存在一个结论:

f(n)=∑d|nμ(d)F(⌊nd⌋)
这个定理就称作莫比乌斯反演定理。
在这里插入图片描述
这个公式的证明:
在这里插入图片描述
对于莫比乌斯函数的线性筛法(其实就是在筛质数的前提下进行筛,如果这个数是质数,那么他的莫比乌斯函数就为-1,如果是能被i*(primes[j])消掉的话,他的莫比乌斯函数就为0,否则就为-mobius[i]
下面请看代码:

void get_mu(int n)
{
    mu[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!vis[i]){prim[++cnt]=i;mu[i]=-1;}
        for(int j=1;j<=cnt&&prim[j]*i<=n;j++)
        {
            vis[prim[j]*i]=1;
            if(i%prim[j]==0)break;
            else mu[i*prim[j]]=-mu[i];
        }
    }
 }

至于狄利克雷卷积法,我学了之后再补充吧哈哈哈

注意

当d是n的倍数的时候也满足莫比乌斯反演定理,推导过程如下
在这里插入图片描述
在这里插入图片描述
这个μ是莫比乌斯函数的意思

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宇智波一打七~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值