继续整理神奇的公式中。
题意很简单,直接上神奇的公式:
如果
Fn
表示斐波那契数列第i个数,那么
gcd(Fm,Fn)=Fgcd(n,m)
那这个题就可以转化为
for:m=1~n
gcd(Fm,Fn)=1
即for:m=1~n
Fgcd(m,n)=1
即:
for:m=1~n
gcd(n,m)=1或者gcd(n,m)=2
这里要注意的是除了4,其他的所有偶数都会有比2大的因数
所以除了4这个合数之外,n必须不能是合数,但是,素数2不符合定义,所以特判1,2,4三个元素,然后其他的n是素数就输出Yes,否则输出No。
用M_R判断素数就OK了
code:
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<iostream>
#include<string>
#include <set>
//a&3==a%4
using namespace std;
#define ll long long
#define mem(a) memset(a,0,sizeof(a))
const double eps=1e-8;
const int maxn=30010;
const int inf=0x3f3f3f3f;
const int S = 10;
long long mult_mod(long long a,long long b,long long c)
{
a %= c;
b %= c;
long long ret = 0;
long long tmp = a;
while(b)
{
if(b & 1)
{
ret += tmp;
if(ret > c)
ret -= c;
}
tmp <<= 1;
if(tmp > c)
tmp -= c;
b >>= 1;
}
return ret;
}
long long pow_mod(long long a,long long n,long long mod)
{
long long ret = 1;
long long temp = a%mod;
while(n)
{
if(n & 1)
ret = mult_mod(ret,temp,mod);
temp = mult_mod(temp,temp,mod);
n >>= 1;
}
return ret;
}
bool check(long long a,long long n,long long x,long long t)
{
long long ret = pow_mod(a,x,n);
long long last = ret;
for(int i = 1;i <= t;i++)
{
ret = mult_mod(ret,ret,n);
if(ret == 1 && last != 1 && last != n-1)
return true;
last = ret;
}
if(ret != 1)
return true;
else return false;
}
bool Miller_Rabin(long long n)
{
if( n < 2)return false;
if( n == 2)return true;
if( (n&1) == 0)return false;//
long long x = n - 1;
long long t = 0;
while( (x&1)==0 )
{
x >>= 1;
t++;
}
for(int i = 0;i < S;i++)
{
long long a = rand()%(n-1) + 1;
if( check(a,n,x,t) )
return false;
}
return true;
}
int main()
{
ll a;
while(cin>>a)
{
if(a==4)
{
printf("Yes\n");
}
else if(a==2)
{
printf("No\n");
}
else if(a==1)
{
printf("No\n");
}
else
{
if(Miller_Rabin(a))
printf("Yes\n");
else
printf("No\n");
}
}
return 0;
}