[数论] Miller_Rabin素性测试

本文介绍了在面对大整数时如何利用Miller-Rabin算法进行素性测试。通过费马小定理和二次探测定理,阐述了算法的思路与步骤。虽然该算法基于随机性,可能存在误差,但具有较高的正确率,常用于快速判断超级大数的素性。文章还提供了算法的参考代码。
摘要由CSDN通过智能技术生成


问题引入

给定一个数 a a a,要求判断 a a a是否为素数

如果 a a a为一个很小的数,我们可以很快的判断出它是否为素数
但,如果 a a a为一个超级大的数,我们又该如何求解呢?

算法思想

首先介绍两个定理:
1、费马小定理: 若 p 为 素 数 , 则 a p − 1 ≡ 1 ( m o d   p ) 若p为素数,则a^{p-1}\equiv1(mod \ p) pap11(mod p)
2、二次探测定理: 若 x 2 ≡ 1 ( m o d   p ) 且 p 为 素 数 , 那 么 x = 1 或 p − 1 若x^2\equiv1(mod \ p)且p为素数,那么x=1或p-1 x21(mod

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值