一位老木匠需要将一根长的木棒切成N段。每段的长度分别为L1,L2,......,LN(1 <= L1,L2,…,LN <= 1000,且均为整数)个长度单位。我们认为切割时仅在整数点处切且没有木材损失。
木匠发现,每一次切割花费的体力与该木棒的长度成正比,不妨设切割长度为1的木棒花费1单位体力。例如:若N=3,L1 = 3,L2 = 4,L3 = 5,则木棒原长为12,木匠可以有多种切法,如:先将12切成3+9.,花费12体力,再将9切成4+5,花费9体力,一共花费21体力;还可以先将12切成4+8,花费12体力,再将8切成3+5,花费8体力,一共花费20体力。显然,后者比前者更省体力。
那么,木匠至少要花费多少体力才能完成切割任务呢?
Input
第1行:1个整数N(2 <= N <= 50000) 第2 - N + 1行:每行1个整数Li(1 <= Li <= 1000)。
Output
输出最小的体力消耗。
Input示例
3 3 4 5
Output示例
19
其实这一题的思想很简单,就怕你想不起来;感觉其他人都是
大神,什么题感觉他们做出来很随意,我是累的够呛
想一想,无论到最后用多少力气,那肯定是会把木棒分成n段
我们反着想把那段每次挑出来2个黏在一起,怎么最省力?
那肯定是每次挑出来最短的2个黏在一起,然后从n-1个中再
挑出来最短的2个黏在一起,这样才会最省力;现在你就可以写代码了
其实这是哈夫曼的思想(看样子数据结构还是要好好学啊)
#include<cstdio>
#include<queue>
#include<functional>
using namespace std;
int main()
{
priority_queue<int,vector<int>,greater<int> >que;//小的优先级高
int n,i;
scanf("%d",&n);
for(i=0;i<n;++i)
{
int temp;
scanf("%d",&temp);
que.push(temp);
}
int sum=0,a,b;
while(que.size()>1)
{
a=que.top();
que.pop();
b=que.top();
que.pop();
sum+=a+b;
que.push(a+b);
}
printf("%d\n",sum);
return 0;
}